共查询到20条相似文献,搜索用时 0 毫秒
1.
《International Journal of Hydrogen Energy》2021,46(78):38923-38933
Numerous accidents in HRSs have been reported worldwide in accident databases; therefore, many researchers have performed quantitative risk assessments (QRAs) of HRSs to enable risk-informed decision making in determining the safety distances or risk mitigation measures. The HRSs, located in urban areas such as Tokyo in Japan, are situated in congested areas with tall buildings and high population density; thus, they have relatively narrow station areas. However, the QRAs are generally suitable for large plants such as nuclear power plants or chemical plants; therefore, relatively small plants or installations, such as HRSs, have not yet been considered as QRA objects. Hence, it is necessary to conduct detailed QRAs with risk analyses and reduce the applied uncertainties for relatively small plants or installations. We applied a model-based approach of risk assessment to model the HRS process using multi-physics system-level modeling and simulated a target system using Modelica—an equation-based, object-oriented modeling language that allows acausal modeling of complex cyber-physical systems The primary aim of this study was to conduct a QRA of an HRS based on multi-physics system-level modeling. First, we modeled the HRS components and physical relationships between the components using basic physical equations. Then, we elucidate a QRA based on the constructed model. The difference in the leakage rates due to the leak positions and dynamic behavior of the model parameters were calculated using the constructed model. Finally, we estimated the individual risks of all the scenarios and compared the resulting risk contours based on the constructed model that includes the hydrogen-fuel dynamic behavior with those based on the traditional model. These results indicate that it is possible to assess whether the risks around the station boundary are acceptable based on the scenario information obtained by evaluating the risks near the station. 相似文献
2.
《International Journal of Hydrogen Energy》2019,44(2):1288-1298
Hydrogen is one of important energy source in the next generation of renewable energy. It has powerful strength such as no emission from CO2 for fuel, Nevertheless, many countries have difficulties to expand hydrogen infra due to high risky from hydrogen. Especially, the hydrogen refueling station which is located in urban area has congested structure and high population around, it has higher risk than conventional refueling station. This paper presents a quantitative risk assessment (QRA) of a high pressure hydrogen refueling station in an urban area with a large population and high congestion between the instruments and equipment. The results show that leaks from the tube-trailer and dispenser as well as potential explosion of the tube-trailer are the main risks. For the safety of the station operator, customers and people surrounding the refueling station, additional mitigation plans such as adding additional safety barrier system have to be implemented on the compressor and dispenser in order to prevent continuous release of hydrogen from an accident. 相似文献
3.
Tomoya Suzuki Kento Shiota Yu-ichiro Izato Masahiro Komori Koichi Sato Yasuyuki Takai Takayuki Ninomiya Atsumi Miyake 《International Journal of Hydrogen Energy》2021,46(11):8329-8343
Although hydrogen refueling stations (HRSs) are becoming widespread across Japan and are essential for the operation of fuel cell vehicles, they present potential hazards. A large number of accidents such as explosions or fires have been reported, rendering it necessary to conduct a number of qualitative and quantitative risk assessments for HRSs. Current safety codes and technical standards related to Japanese HRSs have been established based on the results of a qualitative risk assessment and quantitative effectiveness validation of safety measures over ten years ago. In the last decade, there has been much development in the technologies of the components or facilities used in domestic HRSs and much operational experience as well as knowledge to use hydrogen in HRSs safely have been gained through years of commercial operation. The purpose of the present study is to conduct a quantitative risk assessment (QRA) of the latest HRS model representing Japanese HRSs with the most current information and to identify the most significant scenarios that pose the greatest risks to the physical surroundings in the HRS model. The results of the QRA show that the risk contours of 10?3 and 10?4 per year were confined within the HRS boundaries, whereas the risk contours of 10?5 and 10?6 per year are still present outside the HRS. Comparing the breakdown of the individual risks (IRs) at the risk ranking points, we conclude that the risk of jet fire demonstrates the highest contribution to the risks at all of the risk ranking points and outside the station. To reduce these risks and confine the risk contour of 10?6 per year within the HRS boundaries, it is necessary to consider risk mitigation measures for jet fires. 相似文献
4.
LI. Zhiyong PAN. Xiangmin MA. Jianxin 《International Journal of Hydrogen Energy》2011,36(6):4079-4086
This paper presents a QRA study on a gaseous hydrogen refueling station of 2010 World Expo. Risks to station personnel, to refueling customers and to third parties are evaluated respectively. Uncertainties that intervene in the risk analysis are also discussed. The results show that the leaks from compressors and dispensers are the main risk contributors to first party and second party risks of the Expo station, indicating that risk mitigation measures should in the first place be implemented on compressors and dispensers. For the sake of the safety of station personnel, customers, and people outside the Expo station, additional safety barrier systems must be implemented on compressors and dispensers to prevent continuous release of hydrogen from happening. With appropriate mitigation measures on compressors and dispensers, risks to all three parties of the Expo station can be reduced to the value lower than the risk acceptance criteria. 相似文献
5.
《International Journal of Hydrogen Energy》2019,44(41):23522-23531
A quantitative risk assessment of human life during the operation of a hydrogen refueling station (HRS) is conducted. We calculate the risks for three accident scenarios: a hydrogen leak from the external piping surrounding a dispenser, a hydrogen leak from an accumulator connection piping and a hydrogen leak from a compressor/connection piping in the HRS. We first calculate the probability of accident by multiplying the estimated leak frequency with the incident occurrence probability considering the ignition probability and failure probability of the safety barrier systems obtained through event tree analysis for each scenario. We next simulate the blast and flame effects of the ignition of concentration fields formed by hydrogen leakage. We then use existing probit functions to estimate the consequences of eardrum rupture, fatalities due to displacement by the blast wave, fatalities due to head injuries, first-degree burns, second-degree burns, and fatal burn injuries by accident scenario, leak size, and incident event, and we estimate the risk distribution in 1-m cells. We finally assess the risk reduction effects of barrier placement and the distance to the dispenser and quantify the risk level that HRSs can achieve under existing law. Quantitative risk assessment reveals that the risk for a leak near the dispenser is less than 10−6 per year outside a distance of 6 m to the dispenser. The risk for a leak near the accumulators and compressors exceeds 10−4 per year within a distance of 10 m from the ignition point. A separation of 6 m to the dispenser and a barrier height of 3 m keep the fatal risk from burns to the workers, consumers and residents and passersby below the acceptable level of risk. Our results therefore show that current laws sufficiently mitigate the risks posed by HRSs and open up the possibility for a regulatory review. 相似文献
6.
《International Journal of Hydrogen Energy》2021,46(71):35511-35524
Several countries are incentivizing the use of hydrogen (H2) fuel cell vehicles, thereby increasing the number of H2 refueling stations (HRSs), particularly in urban areas with high population density and heavy traffic. Therefore, it is necessary to assess the risks of gaseous H2 refueling stations (GHRSs) and liquefied H2 refueling stations (LHRSs). This study aimed to perform a quantitative risk assessment (QRA) of GHRSs and LHRSs. A comparative study is performed to enhance the decision-making of engineers in setting safety goals and defining design options. A systematic QRA approach is proposed to estimate the likelihood and consequences of hazardous events occurring at HRSs. Consequence analysis results indicate that catastrophic ruptures of tube trailer and liquid hydrogen storage tanks are the worst accidents, as they cause fires and explosions. An assessment of individual and societal risks indicates that LHRSs present a lower hazard risk than GHRSs. However, both station types require additional safety barrier devices for risk reduction, such as detachable couplings, hydrogen detection sensors, and automatic and manual emergency shutdown systems, which are required for risk acceptance. 相似文献
7.
This paper discusses the preliminary results of the Risk Management subtask efforts within the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 on Hydrogen Safety to develop uniform harm criteria for use in the Quantitative Risk Assessments (QRAs) of hydrogen facilities. The IEA HIA Task 19 efforts are focused on developing guidelines and criteria for performing QRAs of hydrogen facilities. The performance of QRAs requires that the level of harm that is represented in the risk evaluation be established using deterministic models. The level of harm is a function of the type and level of hazard. The principle hazard associated with hydrogen facilities is uncontrolled accumulation of hydrogen in (semi) confined spaces and consecutive ignition. Another significant hazard is combustion of accidentally released hydrogen gas or liquid, which may or may not happen instantaneously. The primary consequences from fire hazards consist of personnel injuries or fatalities, or facility and equipment damage due to high air temperatures, radiant heat fluxes, or direct contact with hydrogen flames. The possible consequences of explosions on humans and structures or equipment include blast wave overpressure effects, impact from fragments generated by the explosion, the collapse of buildings, and the heat effects from subsequent fire balls. A harm criterion is used to translate the consequences of an accident, evaluated from deterministic models, to a probability of harm to people, structures, or components. Different methods can be used to establish harm criteria including the use of threshold consequence levels and continuous functions that relate the level of a hazard to a probability of damage. This paper presents a survey of harm criteria that can be utilized in QRAs and makes recommendations on the criteria that should be utilized for hydrogen-related hazards. 相似文献
8.
《International Journal of Hydrogen Energy》2023,48(77):29835-29851
The layout of electric vehicles charging stations and hydrogen refueling stations (HRSs) is more and more necessary with the development of electric vehicles (EVs) and progress in hydrogen energy storage technology. Due to the high costs of HRSs and the low demand for hydrogen, it is difficult for independent HRSs to make a profit. This study focuses on the dynamic planning of energy supply stations on highways in the medium and long term, considering the growth of EV charging demand and the change in the proportion of hydrogen fuel cell vehicles (HFCVs). Based on the perspective of renewable energy generators (REGs), this study seeks the dynamic optimal configuration and comprehensive benefits of adding HRS and battery to existing EVCS considering the travel rules of new energy vehicles (NEVs). The results show that (1) It is profitable for REGs to invest in HRSs; (2) The economy of investment in batteries by REGs depends on the source-load matching. It is feasible only when the output of renewable energy is difficult to meet the demand. (3) The business model of REGs producing hydrogen on-site and supplying both electricity and hydrogen is feasible. 相似文献
9.
Roberta Caponi Andrea Monforti Ferrario Enrico Bocci Gianluca Valenti Massimiliano Della Pietra 《International Journal of Hydrogen Energy》2021,46(35):18630-18643
The foreseen uptake of hydrogen mobility is a fundamental step towards the decarbonization of the transport sector. Under such premises, both refueling infrastructure and vehicles should be deployed together with improved refueling protocols. Several studies focus on refueling the light-duty vehicles with 10 kgH2 up to 700 bar, however less known effort is reported for refueling heavy-duty vehicles with 30–40 kgH2 at 350 bar. The present study illustrates the application of a lumped model to a fuel cell bus tank-to-tank refueling event, tailored upon the real data acquired in the 3Emotion Project. The evolution of the main refueling quantities, such as pressure, temperature, and mass flow, are predicted dynamically throughout the refueling process, as a function of the operating parameters, within the safety limits imposed by SAE J2601/2 technical standard. The results show to refuel the vehicle tank from half to full capacity with an Average Pressure Ramp Rate (APRR) equal to 0.03 MPa/s are needed about 10 min. Furthermore, it is found that the effect of varying the initial vehicle tank pressure is more significant than changing the ambient temperature on the refueling performances. In conclusion, the analysis of the effect of different APRR, from 0.03 to 0.1 MPa/s, indicate that is possible to safely reduce the duration of half-to-full refueling by 62% increasing the APRR value from 0.03 to 0.08 MPa/s. 相似文献
10.
Kazuto Tsuda Seiichiro Kimura Takahiro Takaki Yasuhiro Toyofuku Keisuke Adaniya Kosuke Shinto Kota Miyoshi Kyohei Hirata Liana Christiani Masaru Takada Naoya Kobayashi Shingo Baba Youhei Nagamatsu Megumi Takata 《International Journal of Hydrogen Energy》2014
Fuel cell vehicles (FCVs) are expected to be commercially available on the world market in 2015, therefore, introducing hydrogen-refueling stations is an urgent issue to be addressed. This paper proposes deployment plan of hydrogen infrastructure for the success of their market penetration in the Northeastern United States. The plan consists of three-timeline stages from 2013 to 2025 and divides the designated region into urban area, suburban area and area adjacent to expressway, so that easy to access to hydrogen stations can be realized. Station is chosen from four types of stations: off-site station, urban-type on-site station, suburban-type on-site station and portable station, associated with growing demand. In addition, on-site station is used as hydrogen production factory for off-site station to save total investment. This deployment plan shows that 83% of urban residents can reach station within 10 min in 2025, and that more than 90% people especially in four major cities: Boston, New York City, Philadelphia, and Washington, D.C. can get to station within 10 min by Geographic Information System (GIS) calculation. 相似文献
11.
《International Journal of Hydrogen Energy》2022,47(89):38003-38017
This paper investigates hydrogen storage and refueling technologies that were used in rail vehicles over the past 20 years as well as planned activities as part of demonstration projects or feasibility studies. Presented are details of the currently available technology and its vehicle integration, market availability as well as standardization and research and development activities. A total of 80 international studies, corporate announcements as well as vehicle and refueling demonstration projects were evaluated with regard to storage and refueling technology, pressure level, hydrogen amount and installation concepts inside rolling stock. Furthermore, current hydrogen storage systems of worldwide manufacturers were analyzed in terms of technical data.We found that large fleets of hydrogen-fueled passenger railcars are currently being commissioned or are about to enter service along with many more vehicles on order worldwide. 35 MPa compressed gaseous storage system technology currently dominates in implementation projects. In terms of hydrogen storage requirements for railcars, sufficient energy content and range are not a major barrier at present (assuming enough installation space is available). For this reason, also hydrogen refueling stations required for 35 MPa vehicle operation are currently being set up worldwide.A wide variety of hydrogen demonstration and retrofit projects are currently underway for freight locomotive applications around the world, in addition to completed and ongoing feasibility studies. Up to now, no prevailing hydrogen storage technology emerged, especially because line-haul locomotives are required to carry significantly more energy than passenger trains. The 35 MPa compressed storage systems commonly used in passenger trains offer too little energy density for mainline locomotive operation - alternative storage technologies are not yet established. Energy tender solutions could be an option to increase hydrogen storage capacity here. 相似文献
12.
Julien Mouli-Castillo Stuart R. Haszeldine Kevin Kinsella Mark Wheeldon Angus McIntosh 《International Journal of Hydrogen Energy》2021,46(29):16217-16231
The increased reliance on natural gas for heating worldwide makes the search for carbon-free alternatives imperative, especially if international decarbonisation targets are to be met. Hydrogen does not release carbon dioxide (CO2) at the point of use which makes it an appealing candidate to decarbonise domestic heating. Hydrogen can be produced from either 1) the electrolysis of water with no associated carbon emissions, or 2) from methane reformation (using steam) which produces CO2, but which is easily captured and storable during production. Hydrogen could be transported to the end-user via gas distribution networks similar to, and adapted from, those in use today. This would reduce both installation costs and end-user disruption. However, before hydrogen can provide domestic heat, it is necessary to assess the ‘risk’ associated with its distribution in direct comparison to natural gas. Here we develop a comprehensive and multi-faceted quantitative risk assessment tool to assess the difference in ‘risk’ between current natural gas distribution networks, and the potential conversion to a hydrogen based system. The approach uses novel experimental and modelling work, scientific literature, and findings from historic large scale testing programmes. As a case study, the risk assessment tool is applied to the newly proposed H100 demonstration (100% hydrogen network) project. The assessment includes the comparative risk of gas releases both upstream and downstream of the domestic gas meter. This research finds that the risk associated with the proposed H100 network (based on its current design) is lower than that of the existing natural gas network by a factor 0.88. 相似文献
13.
The potential risk exposure of people for hydrogen refueling stations is often a critical factor to gain authority approval and public acceptance. Quantitative risk assessment (QRA) is often used to quantify the risk around hydrogen facilities and support the communication with authorities during the permitting process. This paper shows a case study on a gaseous hydrogen refueling station using QRA methodology. Risks to station personnel, to refueling customers and to third parties are evaluated respectively. Both individual risk measure and societal risk measure are used in risk assessment. Results show that the compressor leak is the main contributor to risks of all three parties. Elevating compressors can be considered as an effective mitigation measure to reduce occupational risks while setting enclosure around compressors cannot. Both measures are effective to reduce risks to customers. As for third parties, societal risks can be reduced to ALARP region by either elevating compressors or setting enclosure around compressors. External safety distance of compressors cannot be considerably reduced by elevation of compressors, but can significantly be reduced by setting compressor enclosure. However, safety distances of the station are not very sensitive to both mitigation measures. 相似文献
14.
《International Journal of Hydrogen Energy》2019,44(13):6795-6812
The future success of fuel cell electric vehicles requires a corresponding infrastructure. In this study, two different refueling station concepts for fuel cell passenger cars with 70 MPa technology were evaluated energetically. In the first option, the input of the refueling station is gaseous hydrogen which is compressed to final pressure, remaining in gaseous state. In the second option, the input is liquid hydrogen which is cryo-compressed directly from the liquid phase to the target pressure. In the first case, the target temperature of −33 °C to −40 °C [1] is achieved by cooling down. In the second option, gaseous deep-cold hydrogen coming from the pump is heated up to target temperature. A dynamic simulation model considering real gas behavior to evaluate both types of fueling stations from an energetic perspective was created. The dynamic model allows the simulation of boil-off losses (liquid stations) and standby energy losses caused by the precooling system (gaseous station) dependent on fueling profiles. The functionality of the model was demonstrated with a sequence of three refueling processes within a short time period (high station utilization). The liquid station consumed 0.37 kWh/kg compared to 2.43 kWh/kg of the gaseous station. Rough estimations indicated that the energy consumption of the entire pathway is higher for liquid hydrogen. The analysis showed the high influence of the high-pressure storage system design on the energy consumption of the station. For future research work the refueling station model can be applied to analyze the energy consumption dependent on factors like utilization, component sizing and ambient temperature. 相似文献
15.
Piston ring sealing and valve design play an important role in high-pressure oil-free reciprocating compressors for hydrogen refueling stations. The severe non-uniformity of the pressure distribution was suggested to be the root cause of the premature failure of the sealing rings, and therefore a mathematical model was established to simulate the unsteady flow within the gaps of piston rings, based on which the pressure distribution was obtained and the mechanism of the non-uniform abrasion of the rings was disclosed. The method to equalize the pressure difference through each ring was proposed by re-distributing the cut size of each ring, and it was validated experimentally. Aiming at the problem that the self-acting valves in hydrogen compressors could be easily destroyed by severe impact, this paper investigated the motion and impact of valves theoretically and experimentally, based on which the methodology was explored to design the parameters of valves for hydrogen compressors. 相似文献
16.
《International Journal of Hydrogen Energy》2023,48(37):14112-14126
The consequences of hydrogen leaks and explosions are predicted for the sake of the safety in hydrogen refueling stations. In this paper, the effect of wind speed on hydrogen leak and diffusion is analyzed in different regions of a hydrogen refueling station, and the influence of delayed ignition time on hydrogen explosion after an accidental hydrogen leak is further studied by numerical simulation. Results show that the effect of wind speed on the probability of hydrogen fires is distinctive in different regions of hydrogen refueling station. The size of combustible clouds in the trailer front region and the outer region increases in the low wind speed case, and the front of combustible clouds is formed in a spherical shape in the outer region, which can greatly increase the probability of hydrogen explosion. However, the high wind speed may cause an increase of the risk of accidents in the near ground region. Moreover, a non-linear correlation is shown between the rate of combustible cloud dissipation and wind speed after the hydrogen stops leaking. In addition, it is found that an increase in delayed ignition time may lead to an increase in explosion intensity, which is related with the larger high temperature area and stronger explosion overpressure. Two flame fronts and the reverse propagation of the explosion overpressure can be observed, when the delayed ignition time is larger. 相似文献
17.
《International Journal of Hydrogen Energy》2019,44(29):15087-15099
To save compressor investment and promote operation efficiency of hydrogen refueling station, the hydrogen storage alloys for high-pressure hydrogen metal hydride tank is developed. Ti1.02Cr2-x-yFexMny (0.6 ≤ x ≤ 0.75, y = 0.25, 0.3) alloys with main structure of C14 type Laves phase and low dehydrogenation enthalpy were prepared by plasma arc melting and heat treatment. Pressure-composition-temperature measurements show that hydrogen desorption plateau pressures increase with Cr substituted by Fe increasing. The maximum and reversible hydrogen storage capacities are more than 1.85 and 1.65 wt% at 201 K respectively. The hydrogen desorption plateau slopes are all less than 0.5. The symmetry weakening of 2a sites may deteriorate the plateau slop characteristic. Ti1.02Cr0.95Fe0.75Mn0.3 and Ti1.02Cr1.0Fe0.75Mn0.25 alloys are suitable for high pressure hybrid tank which can supply the effective hydrogen (more than 70 MPa) about 40.0, 44.2, 46.9 kg/m3 with 45, 70, 90 MPa compressor, respectively. 相似文献
18.
《International Journal of Hydrogen Energy》2020,45(30):15390-15401
Current Hydrogen Fueling Protocols (HFPs), such as SAE J2601, have been developed for non-communication and communication. They have problems due to the lack of versatility in their scope of application and the efficiency of their application method. The purpose of this study is to develop a new HFP for communication using a Real Time Responding method with outstanding efficiency and versatility. The new HFP was developed using simple model, that played the role of the engine of HFP, and a rigorous model that played the role as the testbed. This new HFP is founded to be more versatile and efficient compared to the existing HFP and to have excellent convenience, stability, safety, and economic feasibility. It is concluded that the new HFP can perform the function for communication only, while the existing HFP is used for both communication and non-communication. 相似文献
19.
Mahesh Kodoth Shu Aoyama Junji Sakamoto Naoya Kasai Tadahiro Shibutani Atsumi Miyake 《International Journal of Hydrogen Energy》2018,43(52):23409-23417
Hydrogen, as a future energy carrier, is receiving a significant amount of attention in Japan. From the viewpoint of safety, risk evaluation is required in order to increase the number of hydrogen refueling stations (HRSs) implemented in Japan. Collecting data about accidents in the past will provide a hint to understand the trend in the possibility of accidents occurrence by identifying its operation time However, in new technology; accident rate estimation can have a high degree of uncertainty due to absence of major accident direct data in the late operational period. The uncertainty in the estimation is proportional to the data unavailability, which increases over long operation period due to decrease in number of stations. In this paper, a suitable time correlation model is adopted in the estimation to reflect lack (due to the limited operation period of HRS) or abundance of accident data, which is not well supported by conventional approaches. The model adopted in this paper shows that the uncertainty in the estimation increases when the operation time is long owing to the decreasing data. 相似文献
20.
T. Kuroki N. Sakoda K. Shinzato M. Monde Y. Takata 《International Journal of Hydrogen Energy》2018,43(11):5714-5721
A dynamic simulation approach to investigate an optimal hydrogen refueling method is proposed. The proposed approach simulates a transient temperature, pressure and mass flow rate of hydrogen flowing inside filling equipment in an actual station during the refueling process to an Fuel Cell Vehicle (FCV) tank. The simulation model is the same as in an actual hydrogen refueling station (HRS), and consists of a Break-Away, a hose, a nozzle, pipes and an FCV tank. Therefore, we can set actual configurations and thermal properties to the simulation model, and then simulate the temperature, pressure and mass flow rate of hydrogen passing through each position based on the supply conditions (temperature and pressure) at the Break-Away. In this study, the simulated temperature, pressure and mass flow rate are compared with the corresponding experimental data. Therefore, we show that the dynamic simulation approach can accurately obtain those values at each position during the refueling process and is an effective step in proposing the optimal refueling method. 相似文献