首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents the results from an experimental study on the energy conversion efficiency of producing hydrogen enriched syngas through uncatalyzed steam biomass gasification. Wood pellets were gasified using a 100 kWth fluidized bed gasifier at temperatures up to 850 °C. The syngas hydrogen concentration and cold gas efficiency were found to increase with both bed temperature and steam to biomass weight ratio, reaching a maximum of 51% and 124% respectively. The overall energy conversion to syngas (based on heating value) also increased with bed temperature but was inversely proportional to the steam to biomass ratio. The maximum energy conversion to syngas was found to be 68%. The conversion of energy to hydrogen (by heating value) increased with gasifier temperature and gas residence time, but was found to be independent of the S/B ratio. The maximum conversion of all energy sources to hydrogen was found to be 25%.  相似文献   

2.
This work investigates the opportunity of retrofitting existing small-scale gasifiers shifting from combined heat and power (CHP) to hydrogen and biofuels production, using steam and biomass residues (woodchips, vineyard pruning and bark). The experiments were carried out in a batch reactor at 700 °C and 800 °C and at different steam flow (SF) rates (0.04 g/min and 0.20 g/min). The composition of the producer gas is in the range of 46–70 % H2, 9–29 % CO, 12–27 % CO2, and 2–6 % CH4. A producer gas specific production factor of approx. 10 NLpg/gchar can be achieved when the lower SFs are used, which allows to provide 80 % of the hydrogen concentration required for biomethanation and MeOH synthesis. As for FT synthesis, an optimal H2/CO ratio of approx. 2 can be achieved. The results of this work provide further evidence towards the feasibility of hydrogen and biofuels generation from residual biomass through steam gasification.  相似文献   

3.
In this paper, a conceptual hybrid biomass gasification system is developed to produce hydrogen and is exergoeconomically analyzed. The system is based on steam biomass gasification with the lumped solid oxide fuel cell (SOFC) and solid oxide electrolyser cell (SOEC) subsystem as the core components. The gasifier gasifies sawdust in a steam medium and operates at a temperature range of 1023-1423 K and near atmospheric pressure. The analysis is conducted for a specific steam biomass ratio of 0.8 kmol-steam/kmol-biomass. The gasification process is assumed to be self-thermally standing. The pressurized SOFC and SOEC are of planar types and operate at 1000 K and 1.2 bar. The system can produce multi-outputs, such as hydrogen (with a production capacity range of 21.8-25.2 kgh−1), power and heat. The internal hydrogen consumption in the lumped SOFC-SOEC subsystem increases from 8.1 to 8.6 kg/h. The SOFC performs an efficiency of 50.3% and utilizes the hydrogen produced from the steam that decomposes in the SOEC. The exergoeconomic analysis is performed to investigate and describe the exergetic and economic interactions between the system components through calculations of the unit exergy cost of the process streams. It obtains a set of cost balance equations belonging to an exergy flow with material streams to and from the components which constitute the system. Solving the developed cost balance equations provides the cost values of the exergy streams. For the gasification temperature range and the electricity cost of 0.1046 $/kWh considered, the unit exergy cost of hydrogen ranges from 0.258 to 0.211 $/kWh.  相似文献   

4.
Catalytic steam gasification of char derived from low-rank coal possesses substantial potential as a source of hydrogen energy and syngas feedstocks, and its performances are largely associated with the employed catalysts. Therein, ion-exchangeable Na or Ca species are always regarded as excellent in-situ catalysts in low-rank coal. In this paper, gasification of Na-Char, Ca-Char and a Na/Ca-Char mixture with different partial pressures of steam was performed within a temperature range of 700–900 °C using a micro fluidized bed reaction analyzer. The results indicate that Na and Ca species could accelerate the gas release rate during gasification and even significantly increase H2 production, in sharp contrast to non-catalytic gasification. Variations in the product gases during Na-Char and Ca-Char gasification were completely different, which associated with the different deactivation pathways and catalytic reaction mechanisms of Na and Ca catalysts. With an increasing gasification temperature, the decreasing trend of H2 production for Na-Char gasification was mainly due to the loss of Na during gasification. Conversely, the enhancement of Ca activity promoted the H2 production. The H2/CO ratio of Ca-Char gasification at 700 °C approximately ranged from 1.0 to 2.0 as a function of the partial pressure of steam, which suggested catalytic gasification can be suitable for hydrogen-rich production and subsequent synthesis reactions. In addition, gasification of Na/Ca-Char mixture produced a higher hydrogen content in the product gases than that of Na-Char or Ca-Char gasification alone, particularly for the 30%Na/70%Ca-Char mixture. It implies that the high H2 production of 70%Ca30%Na-Char mixture was attributed to the cooperative effects of the Na and Ca species on the catalytic activity. This study provides comprehensive information regarding the effects of ion-exchangeable Na, Ca and a Na/Ca mixture on the hydrogen production and syngas composition during steam gasification, which provides new insight into the utilization of low-rank coal.  相似文献   

5.
A review of catalytic hydrogen production processes from biomass   总被引:1,自引:0,他引:1  
Hydrogen is believed to be critical for the energy and environmental sustainability. Hydrogen is a clean energy carrier which can be used for transportation and stationary power generation. However, hydrogen is not readily available in sufficient quantities and the production cost is still high for transportation purpose. The technical challenges to achieve a stable hydrogen economy include improving process efficiencies, lowering the cost of production and harnessing renewable sources for hydrogen production. Lignocellulosic biomass is one of the most abundant forms of renewable resource available. Currently there are not many commercial technologies able to produce hydrogen from biomass. This review focuses on the available technologies and recent developments in biomass conversion to hydrogen. Hydrogen production from biomass is discussed as a two stage process – in the first stage raw biomass is converted to hydrogen substrate in either gas, liquid or solid phase. In the second stage these substrates are catalytically converted to hydrogen.  相似文献   

6.
The pyrolysis-catalytic steam reforming of six agricultural biomass waste samples as well as the three main components of biomass was investigated in a two stage fixed bed reactor. Pyrolysis of the biomass took place in the first stage followed by catalytic steam reforming of the evolved pyrolysis gases in the second stage catalytic reactor. The waste biomass samples were, rice husk, coconut shell, sugarcane bagasse, palm kernel shell, cotton stalk and wheat straw and the biomass components were, cellulose, hemicellulose (xylan) and lignin. The catalyst used for steam reforming was a 10 wt.% nickel-based alumina catalyst (NiAl2O3). In addition, the thermal decomposition characteristics of the biomass wastes and biomass components were also determined using thermogravimetric analysis (TGA). The TGA results showed distinct peaks for the individual biomass components, which were also evident in the biomass waste samples reflecting the existence of the main biomass components in the biomass wastes. The results for the two-stage pyrolysis-catalytic steam reforming showed that introduction of steam and catalyst into the pyrolysis-catalytic steam reforming process significantly increased gas yield and syngas production notably hydrogen. For instance, hydrogen composition increased from 6.62 to 25.35 mmol g?1 by introducing steam and catalyst into the pyrolysis-catalytic steam reforming of palm kernel shell. Lignin produced the most hydrogen compared to cellulose and hemicellulose at 25.25 mmol g?1. The highest residual char production was observed with lignin which produced about 45 wt.% char, more than twice that of cellulose and hemicellulose.  相似文献   

7.
The steam gasification of tableted biomass for H2 production in molten salts was investigated under different conditions. The results showed that the ternary molten carbonates (32 wt% Li2CO3, 33 wt% Na2CO3 and 35 wt% K2CO3) acted as heat medium and catalyst in the gasification process. The use of molten salts could significantly increase total gas and H2 production and simultaneously decrease the concentrations of CO and CH4 in the product gas, and also decrease the yield of condensable tar. The increase in gasification temperature and mass ratio of steam to biomass (S/B) was beneficial for H2 production process. However, excessive steam contributed slightly to the increase in H2 production and largely increased the energy consumption. The optimal S/B ratio was found to be 1.0. The feedstock after tabletting could completely immersed in molten salts, which improved the contact between biomass and molten salts and thus favored the biomass gasification for H2 production. When biomass particle size was 0.25 g/piece, the yield of H2 reached 807.53 mL/g biomass.  相似文献   

8.
In the present study, an updraft biomass gasifier combined with a porous ceramic reformer was used to carry out the gasification reforming experiments for hydrogen-rich gas production. The effects of reactor temperature, equivalence ratio (ER) and gasifying agents on the gas yields were investigated. The results indicated that the ratio of CO/CO2 presented a clear increasing trend, and hydrogen yield increased from 33.17 to 44.26 g H2/kg biomass with the reactor temperature increase, The H2 concentration of production gas in oxygen gasification (oxygen as gasifying agent) was much higher than that in air gasification (air as gasifying agent). The ER values at maximum gas yield were found at ER = 0.22 in air gasification and at 0.05 in oxygen gasification, respectively. The hydrogen yields in air and oxygen gasification varied in the range of 25.05–29.58 and 25.68–51.29 g H2/kg biomass, respectively. Isothermal standard reduced time plots (RTPs) were employed to determine the best-fit kinetic model of large weight biomass air gasification isothermal thermogravimetric, and the relevant kinetic parameters corresponding to the air gasification were evaluated by isothermal kinetic analysis.  相似文献   

9.
Biomass gasification for hydrogen rich syngas production was investigated using the Fe/CaO catalysts in a fluidized bed reactor. The synthesized catalysts were prepared by an impregnation method with different Fe/CaO mass ratios (5%, 10%, 15%, 20%) for enhancing H2 concentration and syngas yields and then characterized using X-ray diffraction (XRD), nitrogen adsorption and desorption isotherms test, scanning electron microscopy (SEM) and CO2 absorption capacity test. The results showed that the Fe load had significant influences on the composition, textural properties and CO2 adsorption capacity. Results of gasification experiments verified that the presence of Fe enhanced the concentration and yield of H2. The highest syngas yield of 38.21 mol/kg biomass, H2 yield of 26.40 mol/kg biomass, LHV values of 8.69 MJ/kg and gasification efficiency of 49.15% were obtained at an optimized mass ratio of Fe/CaO = 5%. In addition, the characterization results indicated that Ca2Fe2O5 phase was formed. The Ca2Fe2O5 had less CO2 absorption capacity and effect on the gasification, but was considered to be a catalyst for tar cracking thus preventing the CaO deactivation.  相似文献   

10.
An integrated system for the production of hydrogen by gasification of biomass and electrolysis of water has been designed and cost estimated. The electrolyser provides part of the hydrogen product as well as the oxygen required for the oxygen blown gasifier. The production cost was estimated to 39 SEK/kg H2 at an annual production rate of 15?000 ton, assuming 10% interest rate and an economic lifetime of 15 years. Employing gasification only to produce the same amount of hydrogen, leads to a cost figure of 37 SEK/kg H2, and for an electrolyser only a production cost of 41 SEK/kg H2. The distribution of capital and operating cost is quite different for the three options and a sensitivity analyses was performed for all of these. However, the lowest cost hydrogen produced with either method is at least twice as expensive as hydrogen from natural gas steam reforming.  相似文献   

11.
In this work, the relation between hydrogen-rich syngas production and the gasification parameters such as equivalence ratio (ER), gasification temperature and biomass moisture content were studied. Stoichiometric equilibrium model that developed during this study was used to investigate the optimum hydrogen output generated from woody biomass in a fixed bed downdraft gasifier by considering the thermodynamic equilibrium limit. The mathematical model, based on thermodynamic equilibrium is necessary to understand complicated gasification process that will contribute to obtain maximum attainable hydrogen production. The effects of different oxidizing agents on the hydrogen concentration in the product gas as well as the effect of various air-biomass, oxygen-biomass and steam-biomass ratios were investigated. For validation, the results obtained from the mathematical model were compared with the experimental data obtained from the gasifier that uses air as gasification medium. The validated mathematical model was used to represent the gasifier that uses both oxygen and air-steam mixture as the gasification medium and the theoretical results were obtained for both cases. The theoretical results clearly show that the gasification process specially ones that use the air-steam mixture as the gasification medium can be used for hydrogen production.  相似文献   

12.
In this work, we study the gasification of pellets produced, after densification, by blending olive mill solid wastes, impregnated or not by olive mill waste water, and pine sawdust under different steam/nitrogen atmospheres. The charcoals necessary for the gasification tests were prepared by pyrolysis using a fixed bed reactor. The gasification technique using steam was chosen in order to produce a hydrogen-enriched syngas. Gasification tests were performed using macro-thermogravimetric equipment. Tests were carried out at different temperatures (750 °C, 800 °C, 820 °C, 850 °C and 900 °C), and at different atmospheres composed by nitrogen and steam at different percentages (10%, 20% and 30%). Results show that the mass variation profiles is similar to the usual lingo-cellulosic gasification process. Moreover, the increase of temperatures or water steam partial pressures affects positively the rate of conversion and the char reactivity by accelerating the gasification process. The increase of the gasification yields demonstrates the promise of using olive mill by-products as alternative biofuels (H2 enriched syngas).  相似文献   

13.
Biomass has great potential as a clean, renewable feedstock for producing modern energy carriers. This paper focuses on the process of biomass gasification, where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The gasifier is one of the least-efficient unit operations in the whole biomass-to-energy technology chain and an analysis of the efficiency of the gasifier alone can substantially contribute to the efficiency improvement of this chain. The purpose of this paper is to compare different types of biofuels for their gasification efficiency and benchmark this against gasification of coal. In order to quantify the real value of the gasification process exergy-based efficiencies, defined as the ratio of chemical and physical exergy of the synthesis gas to chemical exergy of a biofuel, are proposed in this paper. Biofuels considered include various types of wood, vegetable oil, sludge, and manure. In this study, exergetic efficiencies are evaluated for an idealized gasifier in which chemical equilibrium is reached, ashes are not considered and heat losses are neglected. The gasification efficiencies are evaluated at the carbon-boundary point, where exactly enough air is added to avoid carbon formation and achieve complete gasification. The cold-gas efficiency of biofuels was found to be comparable to that of coal. It is shown that the exergy efficiencies of biofuels are lower than the corresponding energetic efficiencies. For liquid biofuels, such as sludge and manure, gasification at the optimum point is not possible, and exergy efficiency can be improved by drying the biomass using the enthalpy of synthesis gas.  相似文献   

14.
Biomass gasification for hydrogen production was performed in a continuous-feeding fluidized-bed with the use of Fe/CaO catalysts. The relationship between catalyst properties and biomass gasification efficiencies was studied. The findings indicated that only CaO was involved in the enhancement of char gasification, resulting in an increased hydrogen production. However, CaO was also easily deactivated by biomass tar. The characterization results indicated that when CaO was impregnated with Fe, Ca2Fe2O5 formed on the surface of the support. Ca2Fe2O5 decomposed polyaromatic tar but was not effective in char gasification. The synergistic effects between Fe and CaO that effectively enhanced biomass gasification mainly involved combustion and pyrolysis, and the biomass gasification products, i.e., char and tar, were further gasified, indicating that tailor-made Fe/CaO catalysts prevented CaO deactivation by tar, thus promoting biomass gasification and hydrogen production.  相似文献   

15.
Thermodynamic analysis of hydrogen production from biomass gasification   总被引:1,自引:0,他引:1  
An investigation is reported of the thermodynamic performance of the gasification process followed by the steam-methane reforming (SMR) and shift reactions for producing hydrogen from oil palm shell, one of the most common biomass resources. Energy and exergy efficiencies are determined for each component in this system. A process simulation tool is used for assessing the indirectly heated Battelle Columbus Laboratory (BCL) gasifier, which is included with the decomposition reactor to produce syngas for producing hydrogen. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, with the Gibbs free energy minimization approach. The gasifier with the decomposition reactor is observed to be one of the most critical components of a biomass gasification system, and is modeled to control the produced syngas yield. Also various thermodynamic efficiencies, namely energy, exergy and cold gas efficiencies are evaluated which may be useful for the design, optimization and modification of hydrogen production and other related processes.  相似文献   

16.
Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000 °C to 1400 °C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. This biomass was used under its non-altered pristine form but also dried or torrefied. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature, oxidizing agent (H2O or CO2) or type of biomass feedstock on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400 °C.  相似文献   

17.
Reactive Flash Volatilization (RFV) is an emerging thermochemical method to produce tar free hydrogen rich syngas from waste biomass at relatively lower temperature (<900 °C) in a single stage catalytic reactor within a millisecond residence time. Here, we show catalytic RFV of bagasse using Ru, Rh, Pd, or Re promoted Ni/Al2O3 catalysts under steam rich and oxygen deficient environment. The optimum reaction conditions were found to be 800 °C, steam to carbon ratio = 1.7 and carbon to oxygen ratio = 0.6. Rh–Ni/Al2O3 performed the best, resulting in highest hydrogen concentration in the synthesis gas at 54.8%, with a corresponding yield of 106.4 g-H2/kg bagasse. A carbon conversion efficiency of 99.96% was achieved using Rh–Ni, followed by Ru–Ni, Pd–Ni, Re–Ni and mono metallic Ni catalyst in that order. Alkali and Alkaline Earth Metal species present in the bagasse ash and char, that deposited on the catalyst, was found to enhance its activity and stability. The hydrogen yield from bagasse was higher than previously reported woody biomass and comparable to the microalgae.  相似文献   

18.
Biomass steam gasification could be an attractive option for sustainable hydrogen production. Biomass, regarded as carbon neutral emitter, could be claimed as carbon negative emitter if carbon dioxide produced is captured and not allowed to emit to the environment during the process. Thus here an experimental study is carried out to find out the potential of hydrogen production from steam gasification of biomass in presence of sorbent CaO and effect of different operating parameters (steam to biomass ratio, temperature, and CaO/biomass ratio). Product gas with hydrogen concentration up to 54.43% is obtained at steam/biomass = 0.83, CaO/biomass = 2 and T = 670 °C. A drop of 93.33% in carbon dioxide concentration was found at CaO/biomass = 2 as compared to the gasification without CaO. Mathematical model based on Gibbs free energy minimization has been developed and is compared with the experimental results.  相似文献   

19.
Exergy analysis of hydrogen production from steam gasification of biomass was reviewed in this study. The effects of the main parameters (biomass characteristics, particle size, gasification temperature, steam/biomass ratio, steam flow rate, reaction catalyst, and residence time) on the exergy efficiency were presented and discussed. The results show that the exergy efficiency of hydrogen production from steam gasification of biomass is mainly determined by the H2 yield and the chemical exergy of biomass. Increases in gasification temperatures improve the exergy efficiency whereas increases in particle sizes generally decrease the exergy efficiency. Generally, both steam/biomass ratio and steam flow rate initially increases and finally decreases the exergy efficiency. A reaction catalyst may have positive, negative or negligible effect on the exergy efficiency, whereas residence time generally has slight effect on the exergy efficiency.  相似文献   

20.
Gasification of biomass can be used for obtaining hydrogen reducing the total greenhouse gases emissions due the fixation of CO2 during photosynthetic processes. The kind of raw materials is an important variable since has a great influence on the energy balance and environmental impacts. Wastes from forestry are considered as the most appropriate raw materials since they do not compete for land. The aim of this work is to determine the environmental feasibility of four Spanish lignocellulosic wastes (vine and almond pruning and forest waste coming from pine and eucalyptus plantation) for the production of hydrogen through gasification. LCA methodology was applied using global warming potential, acidification, eutrophication and the gross energy necessary for the production of 1 Nm3 of hydrogen as impact categories. As expected, the use of biomass instead of natural gas leads to the reduction of CO2 emissions. Regarding to the different feedstocks, biomass coming from forestry is more environmental-friendly since does not need cropping procedures. Finally, the distribution of environmental charges between pruning wastes and fruits (grape and almond) and the use of obtained by-products have a great influence, reducing the environmental impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号