首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonia decomposition in an integrated Catalytic Membrane Reactor for hydrogen production was studied by numerical simulation. The process is based on anhydrous NH3 thermal dissociation inside a small size reactor (30 cm3), filled by a Ni/Al2O3 catalyst. The reaction is promoted by the presence of seven Pd coated tubular membranes about 203 mm long, with an outer diameter of 1.98 mm, which shift the NH3 decomposition towards the products by removing hydrogen from the reaction area. The system fluid-dynamics was implemented into a 2D and 3D geometrical model. Ammonia cracking reaction over the Ni/Al2O3 catalyst was simulated using the Temkin-Pyzhev equation.Introductory 2D simulations were first carried out for a hypothetic system without membranes. Because of reactor axial symmetry, different operative pressures, temperatures and input flows were evaluated. These introductory results showed an excellent ammonia conversion at 550 °C and 0.2 MPa for an input flow of 1.1 mg/s, with a residual NH3 of only a few ppm. 3D simulations were then carried out for the system with membranes. Hydrogen adsorption throughout the membranes has been modeled using the Sievert’s law for the dissociative hydrogen flux. Several runs have been carried out at 1 MPa changing the temperature between 500 °C and 600 °C to point out the conditions for which the permeated hydrogen flux is the highest. With temperatures higher than 550 °C we obtained an almost complete ammonia conversion already before the membrane area. The working temperature of 550 °C resulted to be the most suitable for the reactor geometry. A good matching between membrane permeation and ammonia decomposition was obtained for an NH3 input flow rate of 2.8 mg/s. Ammonia reaction shift due to the presence of H2 permeable membranes in the reactor significantly fostered the dissociation: for the 550 °C case we obtained a conversion rate improvement of almost 18%.  相似文献   

2.
Ammonia has attracted great interest as a chemical hydrogen carrier. However, ammonia decomposition is limited kinetically rather than thermodynamically below 400 °C. We developed a tube-wall catalytic membrane reactor that could decompose ammonia with high conversion even at temperatures below 400 °C. The reactor had excellent heat transfer characteristics, and thus nearly 100% conversion for an NH3 feed of 10 mL/min at 375 °C was achieved with a 2-μm-thick palladium composite membrane, and hydrogen removal from the decomposition side resulted in a large kinetic acceleration.  相似文献   

3.
On-site hydrogen production via catalytic ammonia decomposition presents an attractive pathway to realize H2 economy and to mitigate the risk associated with storing large amounts of H2. This work reports the synthesis and characterization of a dual-layer hollow fiber catalytic membrane reactor for simultaneous NH3 decomposition and H2 permeation application. Such hollow fiber was synthesized via single-step co-extrusion and co-sintering method and constitutes of 26 μm-thick mixed protonic-electronic conducting Nd5.5Mo0.5W0.5O11.25-δ (NMW) dense H2 separation layer and Nd5.5Mo0.5W0.5O11.25-δ-Ni (NMW-Ni) porous catalytic support. This dual-layer NMW/NMW-Ni hollow fiber exhibited H2 permeation flux of 0.26 mL cm−2 min−1 at 900 °C when 50 mL min−1 of 50 vol% H2 in He was used as feed gas and 50 mL min−1 N2 was used as sweep gas. Membrane reactor based on dual-layer NMW/NMW-Ni hollow fiber achieved NH3 conversion of 99% at 750 °C, which was 24% higher relative to the packed-bed reactor with the same reactor volume. Such higher conversion was enabled by concurrent H2 extraction out of the membrane reactor during the reaction. This membrane reactor also maintained stable NH3 conversion and H2 permeation flux as well as structure integrity over 75 h of reaction at 750 °C.  相似文献   

4.
The hydrogen production capabilities of the membrane reactor combining V-10 mol%Fe hydrogen permeable alloy membrane with Ru/Cs2O/Pr6O11 ammonia decomposition catalyst are studied. The ammonia conversion is improved by 1.7 times compared to the Ru/Cs2O/Pr6O11 catalyst alone by removing the produced hydrogen through the V-10mol%Fe alloy membrane during the ammonia decomposition. 79% of the hydrogen atoms contained in the ammonia gas are extracted directly as high-purity hydrogen gas. Both the Ru/Cs2O/Pr6O11 catalyst and the V-10 mol% Fe alloy membrane are highly durable, and the initial performance of the hydrogen separation rate lasts for more than 3000 h. The produced hydrogen gas conforms to ISO 14687–2:2019 Grade D for fuel cell vehicles because the ammonia and nitrogen concentrations are less than 0.1 ppm and 100 ppm, respectively.  相似文献   

5.
In this study, the influence of distribution of ammonia feed along the height of a fixed bed membrane reactor (FBMR) for ammonia decomposition to hydrogen is investigated to understand the leverage of this approach. A rigorous heterogeneous model with verified kinetics is implemented to simulate the reactor. The simulation results indicate that the application of a distributed ammonia feed with equal distribution of injection points resulted in a 17.45% improvement in hydrogen production rate at a low temperature of 800.0 K over a FBMR without feed distribution. In the parameter space of this study, it has been shown that the ammonia conversion is sensitive to the number of distribution points and has an optimal value. It is found that the implication of the optimum number of injection points can substantially reduce the length of the reactor by 75.0% to achieve 100.0% ammonia conversion. The hydrogen reversal permeation phenomenon is observed at a low pressure and the upper part of the reactor. A novel configuration of a FBR and a FBMR with feed distribution is proposed for efficient production of ultra-pure hydrogen at a relatively low pressure. The critical reactor length ratio has been provided for this configuration.  相似文献   

6.
Ammonia is of interest as a hydrogen storage and transport medium because it enables liquid-phase hydrogen storage under mild conditions. Although ammonia can be used directly for energy applications, its use in conventional fuel cell electric vehicles necessitates decomposition into nitrogen and hydrogen, and the purification of the hydrogen to the composition required for commercial proton exchange membrane fuel cells. This article provides a review of the material and process considerations for catalytic ammonia decomposition and shows that Ru-based catalysts on conductive support materials are active at < 500 °C, but further understanding around lifetimes and deactivation conditions is required. This review then explores materials and technologies for hydrogen purification from decomposed ammonia gas streams, and our experiments show that defect-free dense-metal membranes are uninhibited by ammonia and can achieve the required product purity.  相似文献   

7.
Ammonia decomposition was studied in a multifunctional catalytic membrane reactor filled with Ruthenium catalyst and equipped with palladium-coated membranes. To characterize the system we measured NH3 conversion, H2 yield and its partial pressure, the internal and external temperatures of the reactor shell and the electric consumption under several NH3 flow and pressure conditions. Experimental results showed that the combined effect of Ruthenium catalyst and palladium membranes allowed the reaction to reach the equilibrium in all the conditions we tested. At 450 °C the ammonia conversion resulted the most stationary, while at 7 bar the hydrogen yield was almost independent of both the ammonia flow and temperature. In addition, the experimental system used in this work showed high values of NH3 conversion and H2 permeation also without heating the ammonia tank and therefore renouncing to control the feeding gas pressure. When ultra-pure hydrogen is needed at a distal site, a reactor like this can be considered for in situ hydrogen production.  相似文献   

8.
A novel bimodal catalytic membrane reactor (BCMR) consisting of a Ru/γ-Al2O3/α-Al2O3 bimodal catalytic support and a silica separation layer was proposed. The catalytic activity of the support was successfully improved due to enhanced Ru dispersion by the increased specific surface area for the γ-Al2O3/α-Al2O3 bimodal structure. The silica separation layer was prepared via a sol–gel process, showing a H2 permeance of 2.6 × 10−7 mol Pa−1 m−2 s−1, with H2/NH3 and H2/N2 permeance ratios of 120 and 180 at 500 °C. The BCMR was applied to NH3 decomposition for COx-free hydrogen production. When the reaction was carried out with a NH3 feed flow rate of 40 ml min−1 at 450 °C and the reaction pressure was increased from 0.1 to 0.3 MPa, NH3 conversion decreased from 50.8 to 35.5% without H2 extraction mainly due to the increased H2 inhibition effect. With H2 extraction, however, NH3 conversion increased from 68.8 to 74.4% due to the enhanced driving force for H2 permeation through the membrane.  相似文献   

9.
Ammonia is a 1promising raw material for hydrogen production because it may solve several problems related to hydrogen transport and storage. Hydrogen can be effectively produced from ammonia via catalytic thermal decomposition; however, the resulting residual ammonia negatively influences the fuel cells. Therefore, a high-purity hydrogen production system comprising a catalytic decomposition reactor and a plasma membrane reactor (PMR) has been developed in this work. Most of the ammonia is converted to hydrogen and nitrogen by the catalytic reactor. After the product gas containing unreacted ammonia is introduced to the PMR, unreacted ammonia is decomposed and hydrogen is separated in the PMR. Based on these processes, hydrogen with a purity of 99.99% is obtained at the output of the PMR. Optimal operation conditions maximizing the hydrogen production flow rate were investigated. The gap length of the PMR and the gas differential pressure and applied voltage of the plasma influence the flow rate. A pure hydrogen flow rate of ∼120 L/h was achieved using the current operating conditions. The maximum energy efficiency of the developed hydrogen production system is 28.5%.  相似文献   

10.
It is a promising method for hydrogen generation without carbon emitting by ammonia decomposition in a catalytic palladium membrane reactor driven by solar energy, which could also store and convert solar energy into chemical energy. In this study, kinetic and thermodynamic analyses of mid/low-temperature solar thermochemical ammonia decomposition for hydrogen generation in membrane reactor are conducted. Hydrogen permeation membrane reactor can separate the product and shift the reaction equilibrium forward for high conversion rate in a single step. The variation of conversion rate and thermodynamic efficiency with different characteristic parameters, such as reaction temperature (100–300 °C), tube length, and separation pressure (0.01–0.25 bar), are studied and analyzed. A near-complete conversion of ammonia decomposition is theoretically researched. The first-law thermodynamic efficiency, net solar-to-fuel efficiency, and exergy efficiency can reach as high as 86.86%, 40.08%, and 72.07%, respectively. The results of this study show the feasibility of integrating ammonia decomposition for hydrogen generation with mid/low-temperature solar thermal technologies.  相似文献   

11.
Non-oxidative, catalytic decomposition of hydrocarbons is an alternative, one-step process to produce pure hydrogen with no production of carbon oxides or higher hydrocarbons. Carbon produced from the decomposition reaction, in the form of potentially valuable carbon nanotubes, remains anchored to the active catalyst sites in a fixed bed. To facilitate periodical removal of this carbon from the reactor and to make hydrogen production continuous, a fluidized-bed reactor was envisioned. The hypothesis that the tumbling and inter-particle collisions of bed material would efficiently separate nanotubes anchored to the active catalyst sites of the bed particles was tested and shown to be invalid. However, a switching mode reaction system for the semi-continuous production of hydrogen and carbon nanotubes by periodic removal and replenishment of the catalytic bed material has been successfully demonstrated.  相似文献   

12.
In this paper, reaction engineering principles are utilized to analyze process conditions for producing sufficient hydrogen in an ammonia decomposition reactor for generating net power of 100 W in a fuel cell. It is shown that operating the reactor adiabatically results in a sharp decrease in temperature due to endothermic reaction, which results in low conversion of ammonia. For this reason, the reactor is heated electrically to provide heat for the endothermic reactions. It is observed that when the reactor is operated non-adiabatically, it is possible to get over 99.5% conversion of ammonia. The weight of absorbent to reduce ammonia to ppb levels is calculated. An energy balance on the reactor exit gas indicates that there is sufficient heat available to vaporize enough water to achieve 100% relative humidity in the fuel cell. A suitable fuel cell stack is designed and it is shown that this stack is able to provide the necessary power to electrically heat the reactor and produce net power of 100 W.  相似文献   

13.
The potential of the silica membrane reactors for use in the decomposition of hydrogen iodide (HI) was investigated by simulation with the aim of producing CO2-free hydrogen via the thermochemical water-splitting iodine-sulfur process. Simulation model validation was done using the data derived from an experimental membrane reactor. The simulated results showed good agreement with the experimental findings. The important process parameters determining the performance of the membrane reactor used for HI decomposition, namely, reaction temperature, total pressures on both the feed side and the permeate side, and HI feed flow rate were investigated theoritically by means of a simulation. It was found that the conversion of HI decomposition can be improved by up to four times (80%) or greater than the equilibrium conversion (20%) at 400 °C by employing a membrane reactor equipped with a tubular silica membrane. The features to design the membrane reactor module for HI decomposition of the thermochemical iodine-sulfur process were discussed under a wide range of operation conditions by evaluating the relationship between HI conversion and number of membrane tubes.  相似文献   

14.
The steam reforming of methanol was investigated in a catalytic Pd–Ag membrane reactor at different operating conditions on a commercial Cu/ZnO/Al2O3 catalyst. A comprehensive two-dimensional non-isothermal stationary mathematical model has been developed. The present model takes into account the main chemical reactions, heat and mass transfer phenomena in the membrane reactor with hydrogen permeation across the PdAg membrane in radial direction. Model validation revealed that the predicted results satisfy the experimental data reasonably well under the different operating conditions. Also the impact of different operating parameters including temperature, pressure, sweep ratio and steam ratio on the performance of reactor has been examined in terms of methanol conversion and hydrogen recovery. The modeling results have indicated the high performance of the membrane reactor which is related to continuous removal of hydrogen from retentate side through the membrane to shift the reaction equilibrium towards formation of hydrogen. The obtained results have confirmed that increasing the temperature improves the kinetic properties of the catalyst and increase in the membrane's H2 permeance, which results in higher methanol conversion and hydrogen production. Also it is inferred that the hydrogen recovery is favored at higher temperature, pressure, sweep ratio and steam ratio. The model prediction revealed that at 573 K, 2 bar and sweep ratio of 1, the maximum hydrogen recovery improves from 64% to 100% with increasing the steam ratio from 1 to 4.  相似文献   

15.
A new plasma membrane reactor (PMR) was developed to efficiently produce hydrogen from NH3 with the use of atmospheric pressure plasma and a hydrogen separation membrane. The generation of high-purity hydrogen from NH3 was also examined. First, hydrogen gas flowing into the PMR revealed the effect of the PMR on hydrogen separation. Hydrogen separation depends on the partial pressure of hydrogen gas supplied (Pin, H2) and permeated (Pout, H2) when Pin, H20.5 − Pout, H20.5 > 0. Second, NH3 gas flowing into the PMR revealed its hydrogen production characteristics: the maximum hydrogen conversion rate of a typical plasma reactor (PR) is 13%, whereas the PMR converted 24.4%. Hydrogen obtained by hydrogen separation was approximately 100% pure. A hydrogen generation rate of 20 mL/min was stably obtained.  相似文献   

16.
The structure and catalytic properties of nickel catalysts supported on multi-wall carbon nanotubes (MWCNTs) and on three different types of activated carbon (AC) were studied. The surface areas of AC carriers were defining the size of supported nickel particles. Large surface area of AC led to small Ni nanoparticles and high Ni dispersion. Turnover frequency (TOFNH3) of ammonia decomposition decreased with decreasing of Ni particle size. The highest degree of ammonia conversion was observed on Ni/AC prepared by using of AC support with largest surface area. The catalytic activity of Ni/MWCNTs was much higher than catalytic activity of the studied Ni/AC catalysts. The synergic nickel-support interaction and special electronic conductivity properties of MWCNTs were responsible for high catalytic activity of Ni/MWCNTs catalyst.  相似文献   

17.
It is acknowledged that Hydrogen has a decisive role to play in insuring a reliable and efficient penetration of renewable electricity in the energy mix. Nonetheless, building a sustainable Hydrogen Economy is faced with numerous challenges across the value chain. Namely, large-scale production and storage are still open issues that need to be addressed. A promising solution is to store renewable H2 in the form of green ammonia often referred to as Power-to-Ammonia. Thus unlocking all available infrastructure for ammonia to effectively store and export hydrogen in bulk. In this value chain, the missing link is ammonia cracking to recover back hydrogen at high purities. The present work explores a technical solution to recover hydrogen from ammonia at large-scale. Through an exhaustive technoeconomic analysis, we have demonstrated the feasibility of large-scale production of pure H2 from ammonia. The designed Ammonia-to-H2 plant operates at a thermal efficiency of 68.5% to produce 200 MTPD of pure hydrogen at 250 bar. Furthermore, this study has established a final estimation of the Levelized Cost of Hydrogen (LCOH) from green ammonia. It was revealed that LCOH is mostly dependent on green ammonia cost, which in turn varies with renewable electricity cost.  相似文献   

18.
Sepiolite, a clay mineral, was utilized as a support for nickel-based catalysts for COx-free hydrogen production from ammonia decomposition. First, the physical and chemical properties of sepiolite were changed by calcining it at temperatures varying from 500 to 1000 °C, then nickel was impregnated on these calcined supports and tested for ammonia decomposition at various temperatures following reduction at 650 °C. Results indicated that even though the catalysts contained almost the same amount of nickel, they showed different hydrogen production performance. Detailed characterization of the catalysts before and after reaction illustrated that the support obtained by calcining sepiolite at 700 °C shows good basic properties with a high surface area offering a high degree of nickel dispersion. These properties lead to promising hydrogen production rates which are on par, if not higher, than most of the nickel-based catalysts prepared on supports, which are either not cheap or require tedious preparation procedures.  相似文献   

19.
The current study provided the first example to develop the Fe-based catalyst for COx-free hydrogen production via ammonia decomposition through the unique MgFe-layered double hydroxides (MgFe-LDHs) of different stoichiometric Mg/Fe ratio. The so obtained Fe-based catalyst is low-cost, readily obtainable, and environmentally friendly. Structurally, the Fe(FeNx) species are 3D-isolated by the nano-MgO entities, improving anti-sintering potential of Fe(FeNx); and electronically, the Fe (FeNx) species are promoted by the nano-MgO matrix, showing the strongest promoting effect of MgO on Fe(FeNx). At a GHSVNH3 of 150,000 mL gcat−1 h−1, the current N–Mg5.3FeOm catalyst can give an outstanding H2 formation rate of 9.83 mol gcat−1 h−1 at 680 °C and a TOFH2 = 2.19 s−1 at 530 °C. The influence of Mg/Fe constitution on catalyst structure, surface property, and performance was systematically investigated. The in-situ ammonia treatment was superior to the usually adopted hydrogen pre-reduction for the Fe–Mg oxide precursor, leading to easy development of small sized FeNx specimen and activity enhancement.  相似文献   

20.
In this paper the production of ultra-pure hydrogen via autothermal reforming of ethanol in a fluidized bed membrane reactor has been studied. The heat needed for the steam reforming of ethanol is obtained by burning part of the hydrogen recovered via the hydrogen perm-selective membrane thereby integrating CO2 capture. Simulation results based on a phenomenological model show that it is possible to obtain overall autothermal reforming of ethanol while 100% of hydrogen can in principle be recovered at relatively high temperatures and at high reaction pressures. At the same operating conditions, ethanol is completely converted, while the methane produced by the reaction is completely reformed to CO, CO2 and H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号