首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ammonia (NH3) is a carbon-free fuel that shows great research prospects due to its ideal production and storage systems. The experimental data of the laminar burning velocity of NH3/H2/air flame at different hydrogen ratios (XH2 = 0.1–0.5), equivalent ratios (φ = 0.8–1.3), initial pressures (P = 0.1–0.7 MPa), and initial temperatures (T = 298–493 K) were measured. The laminar burning velocity of the NH3/H2/air flame increased upon increasing the hydrogen ratios and temperature, but it decreased upon increasing the pressure. The equivalent ratio of the maximum laminar burning velocity was only affected by the proportion of reactants. The equivalence ratio value of the maximum laminar burning velocity was between 1.1 and 1.2 when XH2 = 0.3. The chemical reaction kinetics of NH3/H2/air flame under four different initial conditions was analyzed. The less NO maximum mole fraction was produced during rich combustion (φ > 1). The results provide a new reference for ammonia as an alternative fuel for internal combustion engines.  相似文献   

2.
The laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas in a wide equivalence ratio range (0.6–5) and initial temperature (298–423 K) was studied by Bunsen burner. The results show that the laminar flame speed first increases and then decreases as the equivalence ratio increasing, which is a maximum laminar flame speed at n = 2. The laminar flame speed increases exponentially with the increase of initial temperature. For different equivalent ratios, the initial temperature effects on the laminar flame speed is different. The initial temperature effects for n = 2 (the most violent point of the reaction) is lower than others. It is found that H, O and OH are affected more and more when the equivalence ratio increase. When the equivalence ratio is far from 2, the reaction path changes, and the influence of initial temperature on syngas combustion also changes. The laminar flame speed of syngas is more severely affected by H + O2 = O + OH and CO + OH = CO2 + H than others, which sensitivity coefficient is larger and change more greatly than others when the initial temperature and equivalence ratio change. Therefore, the laminar flame speed of syngas/air premixed gas is affected by the initial temperature and equivalence ratio. A new correlation is proposed to predict the laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas under the synergistic effect of equivalence ratio and initial temperature (for equivalence ratios of 0.6–5, the initial temperature is 298–423 K).  相似文献   

3.
Experiments were carried out in a constant volume combustion chamber (CVCC) to investigate flame kernel development and flame speed of hydrogen–air mixtures having different fuel–air ratios. A Q-switched Nd: YAG laser with 1064 nm wavelength and pulse duration of 6–9 ns was used for ignition by generating laser induced plasma inside the CVCC. In this study, laser induced ignition of hydrogen–air mixtures was investigated using different initial chamber filling pressures (P = 2.5 bar–10 bar) at different initial temperatures (373 K–523 K). A variable optical setup with converging lenses having different focal lengths (f = 100–250 mm) were used to position the plasma at various locations inside the CVCC. A high speed camera recorded the flame kernel development and a piezoelectric pressure transducer recorded the pressure–time history for all the experiments. The main objective of this study was to determine the dependence of combustion properties of laser ignited hydrogen–air mixtures on lasers, optical configurations and initial conditions prevailing in the CVCC.  相似文献   

4.
In order to control the combustion phase precisely and remarkably extend the operation range of Homogeneous Charge Compression Ignition (HCCI) engine, a method of on-board controllable phase fuel reformation in the reforming chamber is proposed in this paper. HCCI combustion is dominated by chemical kinetics, and H2, OH, H and O are the key radicals and play an important role in controlling HCCI combustion. The attempt of the proposed method is to try to change the control of chemical kinetics into a manipulation of fuel reforming system. The system includes an independent reformation chamber with an injector and a controllable valve that connects reformation chamber and the main chamber. The reforming fuel is reformed into H2-rich gas. The reformed gas enters the cylinder to change the combustion phasing at compression stroke. The model of HCCI with reforming process is built with CHEMKIN 4.1 software, and HCCI process with on-board reformation is simulated. The results show that the components of the reformed gas are influenced by initial temperature and reforming mixture concentration. The maximum fraction of H2 may be obtained by optimizing the trap timing and reforming mixture concentration (optimal value: ΦT = 31 °CA, λ3 = 0.4). The optimized reformed gas does have the ability to change the combustion phasing of HCCI engine. With the help of the on-board controllable phase fuel reformation system, HCCI combustion process can be precisely controlled, and the HCCI engine is allowed to operate under lower intake temperature and higher speed condition, and to keep high IMEP and indicated thermal efficiency.  相似文献   

5.
The experimental studies on the effect of equivalence ratios to the acid gas (H2S and CO2) combustion in the pure oxygen atmosphere was presented in a coaxial jet double channel burner. Three equivalence ratios (Φ = 0.8, 1.0 and 1.5) are examined to analyze the distribution of the flame temperature and gas composition in the normal and inverse diffusion flame along central axial (R = 0.0) and axial line at 3 mm (R = 0.75) in radial direction. The results revealed that acid gas combustion mainly occurred chemical decomposition of H2S and oxidation of H2S and H2 at R = 0.0, while mainly occurred H2S and H2 oxidation at R = 0.75 in the normal diffusion flame. Reducing Φ increased the flame temperature and it is higher at R = 0 than that at R = 0.75 because of heat loss. It also increased the volume fraction of CO, H2 and COS in the flame combustion area, while decreased downstream reactor because of occurring oxidation. CO was formed by the reaction of CO2 and H, and H2 primarily derived from chemical decomposition of H2S. COS was generated by the reaction of CO2 with SH, H2S and S as well as the reaction of CO with SO and SH at R = 0.0, while was mainly formed by the reaction of CO with SO and SH at R = 0.75. H2S mainly occurred the oxidation in the inverse diffusion flame. The temperature at R = 0.0 was still higher than that at R = 0.75, and it was higher than that in the normal diffusion flame in the combustion area. Increasing Φ promoted the formation of CO, H2 and COS, and each gas under Φ of 1.5 was higher significantly. The Φ had no significant effect on the distribution of SO2 compared to the normal diffusion flame, but changed the distribution of CO, H2 and COS. It can be inferred that the content of CO, H2 and COS will be more higher under Claus condition in the inverse diffusion flame.  相似文献   

6.
The paper described the combustion characteristics in a multi-staging vortex combustor by using rice husk as fuel. Effects of the operating conditions namely: equivalence ratio (Φ = 0.8, 1.0 and 1.2) and secondary air ratio (λ = 0.0, 0.15 and 0.25) on combustion characteristics (temperature distribution, fly ash and gas emission) were experimentally studied. In the experiments, the conventional vortex combustor consisted of two straight concentric cylindrical pipes, combustion chamber (outer chamber) and exhaust pipe (inner chamber). The variable size of middle section of the combustor was designed to be adjustable from 1.0D (conventional vortex combustor), to 0.75D and 0.5D as desired. The changes of the middle chamber size lead to multi-staging vortex inside the combustor. In the experiments, the rice husk was fed into the combustor at constant mass flow rate of 0.3 kg/min. Test results revealed that the mean temperature distribution for the multi-staging vortex combustor with middle chamber size of 0.5D was higher than those of 0.75D and 1.0D. The experimental results showed the maximum temperature of about 1176 °C in the vortex chamber with the middle chamber of 0.5D at equivalence ratio, Φ = 0.8 and no secondary air injection, λ = 0.0. Measurements of gas emissions from cyclone collector consisted of O2 = 2.5%, CO2 = 17.3%, and CO = 270 ppm, respectively.  相似文献   

7.
The combustion characteristics of rice husk fuel in a dual-staging vortex-combustor (DSVC) are experimentally investigated. In the present work, the vortex flow is created by using a snail entrance mounted at the bottom of the combustor. The temperature distributions at selected locations inside the combustor, the flue gas emissions (CO, CO2, O2, NOx), and the combustion/thermal efficiency are monitored. Measurements are made at a constant rice husk feed rate of 0.25 kg/min with various excess airs (37%, 56%, 74% and 92%) and different secondary air injection fractions (λ = 0.0, 0.15 and 0.2), respectively. The combustion chamber is 1800 mm high and 300 mm in diameter (D) with a centered exhausted pipe while the middle chamber of the combustor is set to 0.5D. The smaller section at the middle chamber is introduced to split the chamber to be dual-staging chamber where a large central toroidal recirculation zone induced by swirl flow through the small section is generated in the top chamber. The experimental results reveal that the highest temperature inside the combustor is about 1000 °C whereas both the thermal and the combustion efficiency are 41.6% and 99.8% for 74% excess air without the secondary air injection (λ = 0.0). In addition, the emissions are CO2 = 8.1%, O2 = 9.3%, CO = 352 ppm, NOx = 294 ppm and small amount of fly ash. Therefore, the DSVC shows an excellent performance, low emissions, high stabilization and ease of operation in firing the rice husk.  相似文献   

8.
Syngas is a promising alternative energy carrier with low carbon and pollutants emissions, which has huge application potential in internal combustion engines and gas turbines. The combustion characteristics of stoichiometric syngas/air mixtures with varied initial pressure (0.5–2.5 atm) and hydrogen content (10%–90% v/v) were examined through experiments in a rectangular closed channel. The flame images and overpressure dynamics were captured by high-speed schlieren photography and pressure sensors. The flame instabilities and the flame-acoustic wave interaction were explored. The results showed that the flame morphology and dynamics were enhanced with increasing hydrogen content and initial pressure. The Darrius-Landau instability has an impact on flame deformation, which was strengthened with growing initial pressure, while the thermo-diffusive instability could be neglected during combustion. At later stages after tulip inversion, the flame-acoustic wave interaction was relatively outstanding inducing wrinkled flame front and cellular structures on the flame surface.  相似文献   

9.
The paper reports on the results of an experimental study of methane and syngas combustion as well as their co-firing in a bidirectional swirling flow. The results confirmed that the bidirectional flow structure provides a significant decrease in the lean blow-off equivalence ratio as well as that of emissions of main pollutants. The combustion intensification becomes more evident when using syngas is as fuel. The composition of the used syngas is as follows (by volume): H2 - 29.42%; CO - 14.32%; CH4 - 3.8%; N2 - 49.11%; H2O - 3.35%. In this case, the lean blow-off is achieved at ? < 0.1, NOx emission is halved, while CxHy and CO emissions become 20 times less compared to pure methane combustion. However, according to experimental results, the co-combustion of syngas (volume fraction Vsyn = 15%) and methane is the most appropriate fuel utilization mode. It provides blow-off and emission properties similar to those for combustion of pure syngas, whereas energy consumption for its production is much lower. Moreover, unlike hydrocarbon fuel combustion, that of syngas in a bidirectional swirling flow is characterized by the presence of density stratification. This is accompanied by the flame formation at significantly different locations in the combustion chamber at lean and “ultra-lean” modes of operation. Hydrogen combustion most likely to occur in the core region at near-blow-off modes ? < 0.1, whereas normal ‘operating modes in the range 0.2 = ? ≤ 0.4 result in the formation of a conical flame surface where CH4 and CO combustion occurs. These new results with respect to the flame structure as well as blow-off and emission properties make it possible to consider bidirectional vortex combustors for application in modern gas turbine power plants in order to meet the strict environmental and energy requirements.  相似文献   

10.
This paper reports experimental and numerical study of stability and combustion characteristics of premixed oxy-methane flames with hydrogen-enrichment (CH4–H2/O2–CO2 flames) in a model multi-hole burner for clean energy production in gas turbines. The combustor lean blow-out (LBO) limit was presented on an equivalence ratio (Ø) - hydrogen fraction (HF: volumetric fraction of H2 in a mixture of H2+CH4) map spanning over Ø-values of 0.1–1 and HF-values of 0–70% at fixed hole jet velocity and oxygen fraction (OF: volumetric fraction of O2 in a mixture of O2+CO2) of 5.2 m/s and 30%, respectively. The condition of the combustion chamber is assumed to be depicted by the corrugated premixed flame regime. The premixed turbulent flame was modeled using the reaction progress variable flame front topology approach with the Large Eddy Simulation (LES) technique. The recorded combustor stability maps showed great resistance of the micromixer burner technology to flashback, recommending its use for stable gas turbine operation. The results show that H2-enrichment widens the combustor operability limits (higher turndown ratio) by extending the LBO from Ø = 0.45 at HF = 0% down to Ø = 0.15 at HF = 70% with a slight reduction in the heat release factor by 0.1. The high reactivity and higher flame speed of H2 ensures the sustenance of flame at lower equivalence ratios. At high equivalence ratios, H2 addition enhances the reaction rates and makes both the primary and secondary reaction zones shorter and more intense. Increasing HF leads to increase in the Damköhler number (Da) and decrease in both the Karlovitz number (Ka) and flame thickness. The CO emission at the combustor outlet reduced significantly from 241 ppm at HF = 0% to 33.1 ppm at HF = 10%, then it increased back to 364 ppm at HF = 50%.  相似文献   

11.
High-speed schlieren cinematography and pressure records are used to investigate the dynamics of premixed hydrogen/air flame propagation and pressure build up in a partially open duct with an opening located in the upper wall near the right end of the duct. This work provides basic understanding of flame behaviors and the effects of opening ratio on the combustion dynamics. The flame behaves differently under different opening conditions. The opening ratio has an important influence on the flame propagation and pressure dynamics. When the opening ratio α ≤ 0.075 a significant distorted tulip flame can be formed after the full formation of a classical tulip flame. The propagation speed of flame leading tip increases with the opening ratio. The coupling of flame front with the pressure wave is strong at low opening ratio. Both the pressure growth rate and oscillation amplitude inside the duct increases as the opening ratio decreases. The formation times of tulip and distorted tulip flames and the corresponding distances of flame front increase with the increase of the opening ratio.  相似文献   

12.
Hydrogen, as the promising clean alternative energy in the future, is in the spotlight now all over the world. However, its flammable and explosive hazards should be highly considered during its practical application. In this study, the experiments are performed to study premixed hydrogen-air flame propagation in the duct with pellets bed, especially for fuel-rich condition. High-speed schlieren photography is employed to capture flame front development during the experiments. As well as the pressure transducer, is used to track the pressure buildup in the flame propagation process. Different diameters of pellets and different concentrations of gas mixture are considered in this experimental study. The typical evolutions about the tulip flame are similar in all cases, although the tulip flame formation time caused by the laminar flame speed are different. The flame propagation velocity is pretty enhanced in fuel-lean mixture under the effect of large diameter pellets bed, but it is significantly suppressed in fuel-rich conditions. While for the small diameter pellets (d = 3 mm), the suppression effect on flame propagation and pressure is obtained over a wider range of equivalence ratios, especially a better suppression effect is generated near the stoichiometric condition.  相似文献   

13.
This paper investigated the hydrogen enriched methane/air flames diluted with CO2. The turbulent premixed flame was stabilized on a Bunsen type burner and the two dimensional instantaneous OH profile was measured by Planar Laser Induced Fluorescence (PLIF). The flame front structure characteristics were obtained by extracting the flame front from OH-PLIF images. And the turbulence-flame interaction was analyzed through the statistic parameters. The role of hydrogen addition as well as CO2 dilution on the features of turbulent flame were revealed by those parameters. In this work, hydrogen fractions of 0, 0.2 and CO2 dilution ratios of 0, 0.05 and 0.1 were studied. Results showed that hydrogen addition can enhance turbulent burning velocity ST/SL through decreasing the scale of the finer structure of the wrinkled flame front, caused by the smaller flame instability scale. In contrast, CO2 dilution decreased turbulent burning velocity ST/SL due to its inactive response to turbulence perturbation and larger flame wrinkles. For all flames, the probability density function (PDF) profile of the local curvature radius R shows a bias to positive value, resulted from the flame intrinsic instability. The PDF profile of R decreases with CO2 dilution, while the value of local curvature radius corresponding to the peak PDF is larger. This indicates that larger wrinkles structure was generated due to CO2 dilution, which leads to the decrease in ST/SL as a consequence. Hydrogen addition increases the flame volume and results in more intense combustion. CO2 dilution has a decrease effect on flame volume for both XH2 = 0 and XH2 = 0.2 while the decrease is obvious at XH2 = 0.2, ZCO2 = 0.1. In all, hydrogen enrichment improves the combustion while CO2 can moderate combustion. Therefore, adding hydrogen and CO2 in natural gas can be a potential method for adjusting the combustion intensity in combustion chamber during the combustor design.  相似文献   

14.
The aim of the present work is to contribute to the better understanding of the combustion process and the laminar flame properties of methane/hydrogen-air flames at elevated temperatures and pressures. The heat flux method provides an accurate and direct measurement of laminar burning velocities (LBV) at elevated temperatures, while the constant volume chamber method provides measurements at elevated pressures. In the present work, a database of more than 250 experimental points for the range of temperature (298–373 K) and pressure conditions (1–5 bar) for mixtures up to 50% hydrogen in methane was generated using these two methods. Comparison with the sparse literature data shows quite good agreement. A power-law correlation for temperature and pressure is proposed for methane/hydrogen-air mixtures, which has a practical application in estimating the LBV of a natural gas/hydrogen mixture intended to replace pure natural gas in different processes. The power-law temperature exponent, α, and the pressure exponent, β, show inverse trends. The former decreases almost linearly and the latter increases approximately linearly when the hydrogen content is increased. The power-law exponents are highly affected by the mixture equivalence ratio, ?, showing a parabola like trend. However, for the pressure exponent this trend becomes almost linear for 50% H2 in the mixture. The power-law correlation has been validated against experimental data for a wide range of temperature (up to 573 K), pressure (1–7.5 bar), equivalence ratios (? between 0.7 and 1.3) and H2 contents up to 50%.  相似文献   

15.
Premixed combustion of hydrogen/air over a platinum (Pt) catalyst is numerically investigated in a planar channel burner with the aim of stabilising the flame at lean to ultra-lean conditions. A steady laminar species transport model is examined in conjunction with elementary heterogeneous and homogeneous chemical reaction schemes and validated against experimental results. A stability map is obtained in a non-catalytic burner for the equivalence ratios (φ) of 0.15–0.20, which serves as the basis for the catalytic flame analysis. Over the Reynolds numbers (Re) investigated in the non-catalytic burner, no flame is observed for φ ≤ 0.16, and flame extinction occurs at Re < 571 and Re < 381 for φ = 0.18 and 0.20, respectively. Moreover, a significant amount of unburned H2 exits the burner in all cases. With the Pt catalyst coated on the walls, complete H2 combustion is attained for 0.10 ≤ φ ≤ 0.20 where the contribution of gas phase (homogeneous) reaction increases with Re. Furthermore, radiation on the wall and at the inlet affects the combustion kinetics and flame temperature. Finally, NOx emission is investigated under the same conditions and found to increase with equivalence ratio but has a negligible effect with the inflow Reynolds number.  相似文献   

16.
Premixed flame of stoichiometric syngas-air mixture with various hydrogen volume fractions, 10% ≤ X (H2) ≤ 90%, propagating in a duct with both ends open is experimentally investigated in this study. Two representative ignition locations, i.e., Ig-1, locating at the center of the duct, and Ig-2, locating at the right open end, are considered. Results show that the tulip flame is first attained in the duct with both ends open at 10% ≤ X (H2) ≤ 50% as the flame is ignited at Ig-1. However, the flame maintains the convex shape with the cellular structure on the flame surface as the flame is ignited at Ig-2. The cellular structure results from Darrieus-Landau instability, but the Darrieus-Landau instability cannot invert the convex flame front. The flame tip and pressure dynamics have been examined. When the flame is ignited at Ig-1, the flame oscillates violently, and the overpressure profiles oscillate as a Helmholtz-type. When the flame is ignited at Ig-2, the left flame front propagates in an atmospheric pressure with a nearly constant speed. The prominent flame acceleration and oscillation are not observed at Ig-2 because of lacking flame acoustic interaction. What's more, the characteristic time of flame propagation has been compared. The time tw is shorter while the time tp is longer than the calculated value, and the time te has been delayed by both open ends. The flame propagation process is moderated as the flame propagates in the duct with both ends open.  相似文献   

17.
The effects of different initial temperatures (T = 300–500 K) and different hydrogen volume fractions (5%–20%) on the combustion characteristics of premixed syngas/air flames in rectangular tubes were investigated experimentally. A high-speed camera and pressure sensor were used to obtain flame propagation images and overpressure dynamics. The CHEMKIN-PRO model and GRI Mech 3.0 mechanism were used for simulation. The results show that the flame propagation speed increases with the initial temperature before the flame touches the wall, while the opposite is true after the flame touches the wall. The increase in initial temperature leads to the increase in overpressure rise rate in the early flame propagation process, but the peak overpressure is reduced. The laminar burning velocity (LBV) and adiabatic flame temperature (AFT) increase with increasing initial temperature. The increase in initial temperature makes the peaks of H, O, and OH radicals increase.  相似文献   

18.
High-speed schlieren photography, pressure records and large eddy simulation (LES) model are used to study the shape changes, dynamics of premixed flame propagation and pressure build up in a closed duct. The study provides further understanding of the interaction between flame front, pressure wave and combustion-generated flow, especially when the flame acquires a “distorted tulip” shape. The Ulster multi-phenomena LES premixed combustion model is applied to gain an insight into the phenomenon of “distorted tulip” flame and explain the experimental observations. The model accounts for the effects of flow turbulence, turbulence generated by flame front itself, selective diffusion, and transient pressure and temperature on the turbulent burning velocity. The schlieren images show that the flame exhibits a salient “distorted tulip” shape with two secondary cusps superimposed onto the two original tulip lips. This curious flame shape appears after a well-pronounced classical tulip flame is formed. The dynamics of “distorted tulip” flame observed in the experiment is well reproduced by LES. The numerical simulations show that large-scale vortices are generated in the burnt gas after the formation of a classical tulip flame. The vortices remain in the proximity of the flame front and modify the flow field around the flame front. As a result, the flame front in the original cusp and near the sidewalls propagates faster than that close to the centre of the original tulip lips. The discrepancy in the flame propagation rate finally leads to the formation of the “distorted tulip” flame. The LES model validated previously against large-scale hydrogen/air deflagrations is successfully applied in this study to reproduce the dynamics of flame propagation and pressure build up in the small-scale duct. It is confirmed that grid resolution has an influence to a certain extent on the simulated combustion dynamics after the flame inversion.  相似文献   

19.
Fundamental combustion characteristics of H2/air flames with the addition of actual H2/air combustion residuals (a mixture of 65% N2 + 35% H2O by mole) are examined experimentally and numerically at 1–2 bar, 373–473 K, equivalence ratio of 0.7, and dilution ratios of 0–40%. Spherically expanding flame measurements at constant pressure show that flame speed and adiabatic flame temperature drop almost linearly with increasing diluent level. Detailed numerical simulations and analyses of sensitivity coefficients reveal that this is because of the low chemical reactivity of the dilution mixture. On the other hand, the change in burned gas Markstein length with the dilution mixture addition is found more complex and cannot be represented with a linear trend. Experimental flame speed data are compared with results of chemical kinetic analyses obtained by several chemical mechanisms in order to assess the accuracy of these models.  相似文献   

20.
In this study, effects of the addition of solid surface on carbon monoxide (CO) emission reduction were investigated in a combustion chamber of a three pass fire tube water heater. The solid surface called as the filling material (FM) was placed coaxially in the center of the combustion chamber. The experiments were carried out on a 116 kW fire tube water heater as described in the European Standard EN 676. A natural gas burner was equipped to this heater. The geometry of the FM and excess air ratio (EAR) were the parameters for the experimental study. The CO and hydrogen (H2) concentrations along with the flame temperature were measured in the combustion chamber. It was found that the FM decreased the CO and H2 concentrations considerably. But the flame temperature increased with increasing diameter and length of the FM. For the stochiometric air–fuel ratio, CO emission decreased dramatically compared to the no-FM-case. In the case of without FM, the flame diffused radially in the combustion chamber and the CO concentration increased for the stochiometric air–fuel ratio. It is apparent that the FM diameter is more effective to reduce the emission of the incomplete products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号