首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An asymmetric 75 wt% Sm0.15Ce0.85O1.925-25 wt% Sm0.6Sr0.4Al0.3Fe0.7O3-δ (SDC-SSAF) dual-phase mixed ionic-electronic conducting (MIEC) oxygen-permeable membrane reactor was applied to coproduce ammonia synthesis gas (ASG, H2/N2 = 3) and liquid fuels synthesis gas (LFSG, H2/CO = 2). The effects of CH4 concentration, CH4 flow rate, steam flow rate and temperature on the performance of the membrane reactor were studied. The SDC-SSAF membrane reactor showed an excellent performance for the coproduction of ASG and LFSG. An ASG production rate of 20.7 mL cm−2 min−1, a LFSG production rate of 51.0 mL cm−2 min−1 and an oxygen permeation rate of 9.1 mL cm−2 min−1 were achieved at 925 °C. Compared with traditional industrial processes, the energy saving of this membrane reactor process is expected as high as 66.5%. The post-mortem of the membrane reactor using scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) characterization revealed that the membrane has an excellent structural stability under operation condition.  相似文献   

2.
Metal-free catalysts (SP–KOH–P) doped phosphorus and oxygen as a result of modification with H3PO4 to the surface of the activated carbon sample (SP–KOH) obtained by activation of KOH with Spirulina microalgae were used to obtain hydrogen (H2) from methanolysis of NaBH4. The characteristic structure of SP-KOH-P and SP-KOH metal-free catalysts were examined by XRD, TEM, elemental analysis, FTIR, and ICP-MS. The effects of the amount of catalyst, NaBH4 concentration, reusability, and temperature on H2 production rate from NaBH4 methanolysis reaction were investigated. The hydrogen production rate (HGR) obtained with 25 mg SP-KOH-P was found to be 19,500 mL min?1 g?1. The activation energy (Ea) value of SP-KOH-P metal-free catalyst sample was calculated as 38.79 kJ mol?1.  相似文献   

3.
Micro algae based on Spirulina platensis is successfully used for the synthesis of S and N-doped metal-free carbon materials. The procedure consists of three stages; (i) Activated carbon production by KOH activation in CO2 atmosphere (S-AC), (ii) S atom doping to the obtained S-AC using sulphuric acid by hydrothermal activation (S-AC-S), (iii) N atom doping by hydrothermal activation to S-AC obtained using nitric acid (S-AC-S-N). The S and N doped metal-free catalysts are used for H2 release in NaBH4 methanolysis reaction (NaBH4-MR) for the first time. The metal-free carbon catalysts are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM-EDS), X-ray diffractometer spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), nitrogen adsorption and elemental analysis (CHNS) methods. When the HGR values obtained for S-AC-S-N (26,000 mL min?1 g?1) and S-AC (2641 mL min?1 g?1) are compared, there is a 9.84-fold increase. Activation energy (Ea) value for S-AC-S-N was 10.59 kJ mol?1.  相似文献   

4.
Using liquid formaldehyde as a carrier to obtain clean hydrogen is a promising method. The development of inexpensive catalysts with high activity and stability is crucial for this reaction. Herein, bimetallic Pd–Bi nanocatalysts with different Pd to Bi ratios were prepared through one step in-situ reduction of BiOCl and Pd2+ ions by sodium borohydride (NaBH4). The effect of Pd/Bi ratios and reaction parameters such as formaldehyde concentration and sodium hydroxide concentration on hydrogen production performance were systematically studied. By optimizing the Pd contents in Pd–Bi nanocatalysts under the optimized reaction conditions, an much higher hydrogen (H2) production rate of 472.2 mL min?1g?1 over Pd/BiOCl-3% under 298.15 K can be achieved, which is 4.01 times that of pure Pd nanoparticles (NPs) and much higher than most reported metal-based catalysts.  相似文献   

5.
Herein, we reported a simple and cost-effective fabrication method to develop an effective corrugated serpentine OFMR (C-SOFMR) with advanced features, such as expansion/contraction and wavy microstructure. A laminar flow with no back mixing was observed in plain serpentine OFMR (P-SOFMR). While, stretching and folding of fluid along with back mixing was observed in C-SOFMR. Further, the CdS nanowires on g-C3N4 nanosheet (CN/CdS) heterojunction was synthesized in situ both P-SOFMR and C-SOFMR and utilized the device for the photocatalytic green hydrogen generation. The CN/CdS heterojunction endowed with narrow band gap energy (2.01 eV). The longer CdS nanowires (∼110 nm) benefit the electronic interface with CN in the CN/CdS heterojunction and lead to the spatial separation (reduced recombination) of excitons along the CdS axial direction. The charges generated were utilized efficiently for the HER reaction in both P-SOFMR and C-SOFMR at higher flow rates attributing to the rapid micro-mixing and mass transfer. The CN/CdS heterojunction showed the highest photocatalytic activity (6.38 μmol h−1 in C-SOFMR and 6.16 μmol h−1 in P-SOFMR at 1.0 mL min−1) due to its good optronic properties. This study is a path forward for the utilization of advanced optofluidic devices to produce green hydrogen directly from solar energy.  相似文献   

6.
A binary heterostructured CdS/MoS2 flowerlike composite photocatalysts was synthesized via a simple one-pot hydrothermal method. This photocatalyst demonstrated higher photocatalytic hydrogen production activity than pure MoS2. The heterojunction formed between MoS2 and CdS seems to promote interfacial charge transfer (IFCT), suppress the recombination of photogenerated electron–hole pairs, and enhance the hydrogen generation. Based on the good match between the conduction band (CB) edge of CdS and that of MoS2, electrons in the CB of CdS can be transferred to MoS2 easily through the heterojunction between them, which prevents the accumulation of electrons in the CB of CdS, inhibiting photocorrosion itself and greatly enhancing stability of catalyst. Hydrogen evolution reaction (HER) using Na2S/Na2SO3 or glucose as sacrificial agents in aqueous solution was investigated. The ratio between CdS and MoS2 plays an important role in the photocatalytic hydrogen generation. When the ratio between CdS and MoS2 reaches 40 wt%, the photocatalyst showed a superior H2 evolution rate of 55.0 mmol g−1 h−1 with glucose as sacrificial agent under visible light, which is 1.2 times higher than using Na2S/Na2SO3 as sacrificial agent. Our experimental results demonstrate that MoS2-based binary heterostructured composites are promising for photocorrosion inhibition and highly efficient H2 generation.  相似文献   

7.
High temperature co-electrolysis of H2O/CO2 allows for clean production of syngas using renewable energy, and the novel fuel-assisted electrolysis can effectively reduce consumption of electricity. Here, we report on symmetric cells YSZ-LSCrF | YSZ | YSZ-LSCrF, impregnated with Ni-SDC catalysts, for CH4-assisted co-electrolysis of H2O/CO2. The required voltages to achieve an electrolysis current density of ?400 mA·cm?2 at 850 °C are 1.0 V for the conventional co-electrolysis and 0.3 V for the CH4-assisted co-electrolysis, indicative of a 70% reduction in the electricity consumption. For an inlet of H2O/CO2 (50/50 vol), syngas with a H2:CO ratio of ≈2 can be always produced from the cathode under different current densities. In contrast, the anode effluent strongly depends upon the electrolysis current density and the operating temperature, with syngas favorably produced under moderate current densities at higher temperatures. It is demonstrated that syngas with a H2:CO ratio of ≈2 can be produced from the anode at a formation rate of 6.5·mL min?1·cm?2 when operated at 850 °C with an electrolysis current density of ?450 mA·cm?2.  相似文献   

8.
This article describes the ability of the Chlorella vulgaris BEIJ strain G-120 to produce hydrogen (H2) via both direct and indirect pathways without the use of nutrient starvation. Photobiological H2 production reached a maximum rate of 12 mL H2 L?1 h?1, corresponding to a light conversion efficiency (light to H2) of 7.7% (average 3.2%, over the 8-day period) of PAR, (photosynthetically active irradiance). Cells presented a maximum in vivo hydrogenase activity of 25.5 ± 0.2 nmoles H2 μgChl?1 h?1 and the calculated in vitro hydrogenase activity was 830 ± 61 nmoles H2 μgChl?1 h?1. The strain is able to grow either heterotrophically or photo autotrophically. The total output of 896 mL of H2 was attained for illuminated culture and 405 mL for dark cultures. The average H2 production rate was 4.98 mL L?1 h?1 for the illuminated culture and 2.08 mL L?1 h?1 for the one maintained in the dark.  相似文献   

9.
Achieving high catalytic performance with the lowest possible amount of noble metal is critical for any catalytic applications. Herein, we report a controllable method of preparing low Ru loaded, N-doped porous carbon embedded with cobalt oxide species (Ru/CoOx@NPC) using core-shell metal-organic framework (MOF) as a template. The optimized catalyst exhibits a highly powerful yet stable performance of H2 production through sodium borohydride (NaBH4) hydrolysis. The Ru/CoOx@NPC catalyst shows a fast H2 generation rate (8019.5 mL min?1 gcat?1), high turnover frequency (1118.6 mol min?1 molRu?1), and reusability. The carbonized ZIF-8 core and the ZIF-67 outer shell supplies a porous carbon moiety that not only improves the conductivity and but also provides uniform distribution of the active sites. The XPS analysis indicates that there is a strong electronic interaction between Co species and Ru species. The superior catalytic performance can be attributable to the large specific surface area as well as the synergy between Co-oxide and Ru clusters.  相似文献   

10.
Photocatalytic efficient hydrogen evolution from pure water with non-noble metal system has more practical application value. In this study, the ZnCdS/Co@CoO composite photocatalyst was prepared by a simple hydrothermal reduction method. The hydrogen evolution rate from water can reach to 793 μmol·g?1·h?1 in sacrificial agent-free system, and 5445 μmol·g?1·h?1 with Na2S and Na2SO3 as sacrificial agent. The S-scheme heterojunction formed between ZnCdS and Co@CoO, as well as the abundant S vacancy were proved to be the key factors to effectively improve the photocatalytic performance. The study on the high hydrogen production efficiency and catalytic mechanism of ZnCdS/Co@CoO in sacrificial agent-free can provide ideas for the design and preparation of more efficient non-noble metal photocatalysts.  相似文献   

11.
Here, the carbon nanodots were successfully synthesized from pomegranate peels (PPCD). This obtained PPCD was treated by a hydrothermal process with phosphoric acid for P doping (P doped PPCD) and used as a metal-free catalyst to obtain hydrogen(H2) from sodium borohydride (NaBH4) methanolysis for the first time. The characteristics of the samples obtained by ultraviolet, fluorescence, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Inductively coupled plasma mass spectrometry (ICP-MS) analyses were examined. NaBH4 concentration effect, temperature effect and catalyst reusability experiments were carried out. Using 10 mg of the catalyst with 2.5% NaBH4, an HGR value of 13000 mL min?1g?1 was obtained. The activation energy (Ea) for the P-doped PPCD catalyst was 30.96 kJ mol?1.  相似文献   

12.
On-site hydrogen production via catalytic ammonia decomposition presents an attractive pathway to realize H2 economy and to mitigate the risk associated with storing large amounts of H2. This work reports the synthesis and characterization of a dual-layer hollow fiber catalytic membrane reactor for simultaneous NH3 decomposition and H2 permeation application. Such hollow fiber was synthesized via single-step co-extrusion and co-sintering method and constitutes of 26 μm-thick mixed protonic-electronic conducting Nd5.5Mo0.5W0.5O11.25-δ (NMW) dense H2 separation layer and Nd5.5Mo0.5W0.5O11.25-δ-Ni (NMW-Ni) porous catalytic support. This dual-layer NMW/NMW-Ni hollow fiber exhibited H2 permeation flux of 0.26 mL cm−2 min−1 at 900 °C when 50 mL min−1 of 50 vol% H2 in He was used as feed gas and 50 mL min−1 N2 was used as sweep gas. Membrane reactor based on dual-layer NMW/NMW-Ni hollow fiber achieved NH3 conversion of 99% at 750 °C, which was 24% higher relative to the packed-bed reactor with the same reactor volume. Such higher conversion was enabled by concurrent H2 extraction out of the membrane reactor during the reaction. This membrane reactor also maintained stable NH3 conversion and H2 permeation flux as well as structure integrity over 75 h of reaction at 750 °C.  相似文献   

13.
In the study, metal-free boron and oxygen incorporated graphitic carbon nitride (B and O doped g-C3N4) with carbon vacancy was successfully prepared and applied as a catalyst to the dehydrogenation of sodium borohydride (NaBH4) in methanol for the first time. The hydrogen generation rate (HGR) value was found to be 11,600 mL min?1g?1 by NaBH4 of 2.5%. This is 2.53 times higher than the g-C3N4 catalyst without the addition of B and O. The obtained activation energy was 25.46 kJ mol?1. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), energy dispersive X-Ray analyser (EDX), Transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR) analyses for characterization were performed. A possible mechanism of H2 production from the reaction using metal-free B and O doped g-C3N4 catalyst with carbon vacancy has been proposed. This study showed that g-C3N4 and its composites with doping atoms can be used effectively in H2 production by NaBH4 methanolysis.  相似文献   

14.
In this study, a thermodynamic model of an active direct methanol fuel cell (DMFC) system, which couples in‐house experimental data for the DMFC with the mass and energy balances for the system components (condenser, mixing vessel, blower, and pumps), is formed. The modeling equations are solved using the Engineering Equation Solver (EES) program. This model gives the mass fluxes and thermodynamic properties of fluids for each state, heat and work transfer between the components and their surroundings, and electrical efficiency of the system. The effect of the methanol concentration (between 0.5 and 1.25 M) and air flow rate (between 20 and 30 mL cm?2 min?1) on the net power output and electrical efficiency of the system and the condenser outlet temperature is investigated. The results essentially showed that the highest value for the electrical efficiency of the system is 23.6% when the current density, methanol concentration, and air flow rate are taken as 0.2 A cm?2, 0.75 M, and 20 mL cm?2 min?1, respectively. In addition, the air flow rate was found to be the most significant parameter affecting the condenser outlet temperature.  相似文献   

15.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

16.
The hydrolysis of sodium borohydride (NaBH4) over catalysts is a promising method to produce hydrogen. Although Co-based catalysts exhibit high activity for NaBH4 hydrolysis, they are still far from satisfying practical applications, especially their poor durability in alkaline media. Herein, a carbon shell structure was designed and synthesized to improve the stability of the mixture of Co0 and CoxOy nanofilms (Co/CoxOy@C) during NaBH4 hydrolysis via a facile polymerization-pyrolysis strategy with Co/CoxOy nanofilms as the precursor. As a result, the Co/CoxOy@C catalyst can achieve a remarkable H2 generation rate of 4348.6 mL min?1 gCo?1 with a low activation energy of 43.6 kJ mol?1, which is superior to most previously reported catalysts. Moreover, the catalyst shows high stability with an H2 generation-specific rate of 79% after five cycles. The excellent performance of carbon substrate can well prevent the agglomeration of Co-based nanoparticle and improve the corrosion resistance of the active Co to BO2? and OH?. This work would widen the road for the preparation of nanoconfined catalysts, which has prospective application potentials for H2 production from NaBH4 hydrolysis.  相似文献   

17.
Al and Al2O3 film react with strong acid or alkaline solution, bring the extensive corrosion. To decrease the corrosion, Al is first pretreated with a small amount of HCl, NaOH, NaAlO2 and a mixture of NaAlO2+Al(OH)3 in this work. Al pretreatment allows for the rapid removal of oxide film, shortens the induction time and ensures the initial Al–H2O reaction rate. Typically, immersion of the pretreated Al by a mixture of NaAlO2+Al(OH)3 into water, generates hydrogen rapidly without an induction time, and the average H2 generation rate reaches 5.5 mL min−1. As the Al–H2O reaction proceeds, the potential changes, which is similar to hydrogen evolution of pretreated Al in water. Hydrogen generated rapidly with the consecutive addition of Al, and the initial hydrogen generation rate reaches ~37 mL min−1. Therefore, Al pretreatment by a mixed alkaline solution is an effective method to accelerate hydrogen generation for the first cycle. Rapid and consecutive hydrogen generation by the Al–H2O reaction could provide on-demand and high-purity hydrogen, meet some equipment requirements and promote the competition in renewable-energy sources.  相似文献   

18.
We present numerical investigations on the power-based efficiency of vanadium redox flow battery (VRFB). A three-dimensional numerical model is developed to capture the complexities of electrochemical reactions and fluid dynamics when considering different serpentine channel sizes and electrolyte flow rates. It is shown that the reduced channel size and increased electrolyte flow rate improve the electrochemical performance of the VRFB due to the enhanced distribution of molar centration at the electrodes. Nonetheless, the channel size reduction and increased electrolyte flow rate also increases pressure drop between inlet and outlet of the serpentine channels for negative and positive sides. In this, we calculate the power-based efficiency by considering the generated power of VRFB and power loss due to overpotentials, ohmic loss, and required pump power. The maximum power-based efficiency of 96.6% is calculated with the channel size of 1.9 mm at 60 mL min−1, while it is 95.5% with 9.6 mm in channel size at 100 mL min−1. The proposed numerical approach can be useful to determine the channel size with optimized electrolyte flow rate and maximum VRFB efficiency.  相似文献   

19.
This study focused on the large band gap of TiO2 for its use as a photocatalyst under light emitting diode (LED) light irradiation. The photocatalytic activities of core–shell structured Au@TiO2 nanoparticles (NPs), nitrogen doped Au@TiO2 NPs, and Au@TiO2/rGO nanocomposites (NCs) were investigated under various light intensities and sacrificial reagents. All the materials showed better photocatalytic activity under white LED light irradiation than under blue LED light. The N-doped core–shell structured Au@TiO2 NPs (Au@N–TiO2) and Au@TiO2/rGO NCs showed enhanced photocatalytic activity with an average H2 evolution rate of 9205 μmol h?1g?1 and 9815 μmol h?1g?1, respectively. All these materials showed an increasing rate of hydrogen evolution with increasing light intensity and catalyst loading. In addition, methanol was more suitable as a sacrificial reagent than lactic acid. The rate of hydrogen evolution increased with increasing methanol concentration up to 25% in DI water and decreased at higher concentrations. Overall, Au@TiO2 core–shell-based nanocomposites can be used as an improved photocatalyst in photocatalytic hydrogen production.  相似文献   

20.
In this study, nitrogen (N) doped metal-free catalysts were obtained as a result of nitric acid (HNO3) activation of carbon sample (C–KOH–N), which was obtained based on Chlorella Vulgaris microalgae by KOH activation (C–KOH). These catalysts have been effectively used to produce hydrogen (H2) from the sodium borohydride (NaBH4) methanolysis reaction. Compared to the C–KOH catalyst, the catalytic activity for C–KOH–N showed a seven-fold improvement. Hydrogen generation rate (HGR) values obtained for the NaBH4 methanolysis reaction for C–KOH and C–KOH–N metal-free catalysts were 3250 and 20,100 mL min?1 g?1. The catalysts were characterized using various analytical techniques such as XPS, XRD, SEM, FTIR, BET, and elemental analysis. This work can provide a new alternative strategy to produce specific heteroatom-doped metal-free carbon catalysts for environmentally friendly conversion to produce H2 efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号