共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, both energetic and exergetic performances of a combined heat and power (CHP) system for vehicular applications are evaluated. This system proposes ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H+) with a heat recovery option. Fuel consumption of combined fuel cell and energy storage system is investigated for several cases. The performance of the portable SOFC system is studied in a wide range of the cell’s average current densities and fuel utilization ratios. Considering a heat recovery option, the system exergy efficiency is calculated to be 60-90% as a function of current density, whereas energy efficiency varies between 60 and 40%, respectively. The largest exergy destructions take place in the SOFC stack, micro-turbine, and first heat exchanger. The entropy generation rate in the CHP system shows a 25% decrease for every 100 °C increase in average operating temperature. 相似文献
2.
Reducing greenhouse gas emission such as carbon dioxide is the goal of each country. As a developing country with coal as the dominant energy source, China confronts the pressure of saving energy and reducing emission by using coal efficiently and cleanly. Integrated gasification fuel cell (IGFC) hybrid power generation system is one of optimal system for clean coal utilization. In this work, the three-dimensional mathematical models for planar solid oxide fuel cell (SOFC) with syngas as fuel was constructed, and its performance was numerically investigated at different loads. Under all calculating conditions, the optimal power density is obtained at current density of 4700 A m−2, where the output voltage is 0.57 V and the power density is 2671.01 W m−2. With the increasing of current density, the temperature increase as well. And also the difference of max- and min-temperature in SOFC enhances. But the ohmic over-potential changes unobvious. Furthermore, the change rate of species is nearly linear with the increment of current density. 相似文献
3.
Salha Faleh Sghaier Tahar Khir Ammar Ben Brahim 《International Journal of Hydrogen Energy》2018,43(6):3542-3554
A parametric study is conducted on a hybrid SOFC-GT cycle as part of a national program aiming to improve the efficiency of the actual gas turbine power plants and to better undertake the future investigations. The proposed power plant is mainly constituted by a Gas Turbine cycle, a SOFC system, and an ammonia water absorption refrigerating system. An external pre-reformer is installed before the SOFC. Heat recovery systems are adopted to valorize the waste heat at the SOFC and GT exhausts. The gas from the SOFC exhaust is also used as additional supply for the combustion chamber. An extraction is performed on the gas Turbine in order to feed the SOFC cycle by thermal heat flux at medium pressure.The equations governing the electrochemical processes, the energy and the exergy balances of the power plant components are established. Numerical simulation using EES software is performed. The influences of key operating parameters, such as humidity, pre-reforming fraction, extraction fraction from the Gas Turbine and fuel utilization on the performances of the SOFC-GT hybrid system are analyzed. Obtained results show that the integration of the SOFC enhances significantly the hybrid overall cycle efficiency. The increase of the ambient temperature and humidity reduces the system efficiencies. The utilization factor has a negative effect on the SOFC temperature and voltage. That leads to a decrease in the power plant performances. While the pre-reforming fraction, has a positive effect on the indicated parameters. 相似文献
4.
C. Ozgur Colpan Feridun Hamdullahpur Ibrahim Dincer Yeong Yoo 《International Journal of Hydrogen Energy》2010
In this paper, an integrated solid oxide fuel cell (SOFC) and biomass gasification system is modeled to study the effect of gasification agent (air, enriched oxygen and steam) on its performance. In the present modeling, a heat transfer model for SOFC and thermodynamic models for the rest of the components are used. In addition, exergy balances are written for the system components. The results show that using steam as the gasification agent yields the highest electrical efficiency (41.8%), power-to-heat ratio (4.649), and exergetic efficiency (39.1%), but the lowest fuel utilization efficiency (50.8%). In addition, the exergy destruction is found to be the highest at the gasifier for the air and enriched oxygen gasification cases and the heat exchanger that supplies heat to the air entering the SOFC for the steam gasification case. 相似文献
5.
Thermodynamic calculations were carried out to evaluate the performance of small-scale gasifier–SOFC–GT systems of the order of 100 kW. Solid Oxide Fuel Cells (SOFCs) with Nickel/Gadolinia Doped Ceria (Ni/GDC) anodes were considered. High system electrical efficiencies above 50% are achievable with these systems. The results obtained indicate that when gas cleaning is carried out at temperatures lower than gasification temperature, additional steam may have to be added to biosyngas in order to avoid carbon deposition. To analyze the influence of gas cleaning at lower temperatures and steam addition on system efficiency, additional system calculations were carried out. It is observed that steam addition does not have significant impact on system electrical efficiency. However, generation of additional steam using heat from gas turbine outlet decreases the thermal energy and exergy available at the system outlet thereby decreasing total system efficiency. With the gas cleaning at atmospheric temperature, there is a decrease in the electrical efficiency of the order of 4–5% when compared to the efficiency of the systems working with intermediate to high gas-cleaning temperatures. 相似文献
6.
《International Journal of Hydrogen Energy》2022,47(74):31911-31926
Because of the requirement of the utilization of energy resources in a way that is both effective and efficient, solid oxide fuel cells have become a notable preference due to their advantages such as high efficiency and use with different fuels. In addition, the integration of these systems in the production of alternative fuels such as hydrogen and ammonia are important for a sustainable future to combat environmental problems. For this reason, the main intention of this paper is to introduce a new plant combining the different systems that use the solid oxide fuel cell for a cleaner and sustainable future. In the modeled work, a solid oxide fuel cell, a gas turbine, an organic Rankine cycle, a Kalina cycle with ejector, a hydrogen generation and storage process, a wood steaming plant, and an ammonia production system is integrated, to generate useful products. Detailed thermodynamic modeling is performed through energy and exergy methods, to determine the performance of the advised system and subsystem. Moreover, energy efficiency, exergy efficiency, and exergy destruction analyses methods are applied to each sub-plant and the whole system separately. In addition, parametric research is carried out to examine the effects of modifying key parameters on the plant's and subsystems' performance. Looking at the analysis results, the amount of the hydrogen and ammonia generation capacities of this work are 0.0085 kgs?1and 0.2023 kgs?1, respectively. In addition, the modeled power plant produces a power rate of about 20,180 kW. As a result, this proposed study is calculated to have 61.04% energy efficiency, and 57.13% exergy efficiency. 相似文献
7.
The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger. 相似文献
8.
In this paper, the optimization of a hybrid solid oxide fuel cell–gas turbine (SOFC–GT) power plant is presented. The plant layout is based on an internal reforming SOFC stack; it also consists of a radial gas turbine, centrifugal compressors and plate-fin heat exchangers. In the first part of the paper, the bulk-flow model used to simulate the plant is presented. In the second part, a thermoeconomic model is developed by introducing capital cost functions. The whole plant is first simulated for a fixed configuration of the most important synthesis/design (S/D) parameters in order to establish a reference design configuration. Next a S/D optimization of the plant is carried out using a traditional single-level approach, based on a genetic algorithm. The optimization determined a set of S/D decision variable values with a capital cost significantly lower than that of the reference design, even though the net electrical efficiency for the optimal configuration was very close to that of the initial one. Furthermore, the optimization procedure dramatically reduced the SOFC active area and the compact heat exchanger areas. 相似文献
9.
《International Journal of Hydrogen Energy》2019,44(13):6919-6928
In this thermodynamic investigation, an integrated energy system based on hydrogen fuel is developed and studied energetically and exergetically. The liquefied hydrogen fueled solid oxide fuel cell (SOFC) based system is then integrated with a steam producing cycle to supply electricity and potable water to ships. The first heat recovery system, after the fuel cells provide thrust for the ship, is by means of a turbine while the second heat recovery system drives the ship's refrigeration cycle. This study includes energy and exergy performance evaluations of SOFC, refrigeration cycle and ship thrust engine systems. Furthermore, the effectiveness of SOFCs and a hydrogen fueled engine in reducing greenhouse gas emissions are assessed parametrically through a case study. The main propulsion, power generation from the solid oxide fuel cells, absorption chiller, and steam bottoming cycle systems together have the overall energy and exergy efficiencies of 41.53% and 37.13%, respectively. 相似文献
10.
A necessary step in the use of natural gas (methane) in solid oxide fuel cells (SOFCs) is its preliminary conversion to hydrogen and carbon monoxide. To perform methane conversion within fuel cells and avoid catalyst carbonization the molar ratio between methane and steam (or steam with carbon dioxide) should be 1:2 or higher at the SOFC inlet. In this article two possible technological approaches to provide this desirable ratio in a combined SOFC–gas turbine system are compared. The first approach involves generation of the required steam in the coupled gas turbine cycle. The second (which is more traditional) involves recycling some part of the exhaust gases around the anodes of the SOFC stack. 相似文献
11.
Shuai Wang Bowen Li Xuesong Yang Yurong He 《International Journal of Hydrogen Energy》2021,46(2):1752-1761
Coal gasification system integrated with solid oxide fuel cell (SOFC) provides a promising energy conversion way owing to its high efficiency. To get a deep insight into the energy performance of this system, a thermodynamic evaluation is implemented. Meanwhile, the technologies of chemical looping and CO2 sorption are introduced into this integration system. It is found that the addition of oxygen carrier and sorbent into coal gasification system can promote the output power of the SOFC with a higher exergy destruction, where the exergy efficiency of most modules in the system can reach 80% except tar separation. The results also reveal that a suitable improvement of gasifying agent amount is beneficial to the energy performance of the system. When the H2O/C molar ratio is increased to 3.0, the SOFC exergy efficiency of 97% can be achieved. 相似文献
12.
The aim of this work is to analyze methane-fed internal reforming solid oxide fuel cell–gas turbine (IRSOFC—GT) power generation system based on the first and second law of thermodynamics. Exergy analysis is used to indicate the thermodynamic losses in each unit and to assess the work potentials of the streams of matter and of heat interactions. The system consists of a prereformer, a SOFC stack, a combustor, a turbine, a fuel compressor and air compressor, recuperators and a heat recovery steam generator (HRSG). A parametric study is also performed to evaluate the effect of various parameters such as fuel flow rate, air flow rate, temperature and pressure on system performance. 相似文献
13.
Ming Liu P.V. AravindT. Woudstra V.R.M. CobasA.H.M. Verkooijen 《Journal of power sources》2011,196(17):7277-7289
A detailed system study on an integrated gasifier-SOFC test system which is being constructed for combined heat and power (CHP) application is presented. The performance of the system is evaluated using thermodynamic calculations. The system includes a fixed bed gasifier and a 5 kW SOFC CHP system. Two kinds of gas cleaning systems, a combined high and low temperature gas cleaning system and a high temperature gas cleaning system, are considered to connect the gasifier and the SOFC system. A complete model of the gasifier-SOFC system with these two gas cleaning systems is built and evaluated in terms of energy and exergy efficiencies. A sensitivity study is carried out to check system responses to different working parameters. The results of this work show that the electrical efficiencies of the gasifier-SOFC CHP systems with different gas cleaning systems are almost the same whereas the gasifier-SOFC CHP systems with the high temperature gas cleaning system offers higher heat efficiency for both energy and exergy. 相似文献
14.
Today’s concern regarding limited fossil fuel resources and their contribution to environmental pollution have changed the general trend to utilization of high efficiency power generation facilities like fuel cells. According to annual reducing capital cost of these utilities, their entrance to commercial level is completely expected. Hot exhaust gases of Solid Oxide Fuel Cells (SOFC) are potentially applicable in heat recovery systems. In the present research, a SOFC with the capacity of 215 kW has been combined with a recovery cycle for the sake of simultaneous of electric power, cooling load and domestic hot water demand of a hotel with 4600 m2 area. This case study has been evaluated by energy and exergy analysis regarding exergy loss and second law efficiency in each component. The effect of fuel and air flow rate and also current density as controlling parameters of fuel cell performance have been studied and visual software for energy-exergy analysis and parametric study has been developed. At the end, an economic study of simultaneous energy generation and recovery cycle in comparison with common residential power and energy systems has been done. General results show that based on fuel lower heating value, the maximum efficiency of 83 percent for simultaneous energy generation and heat recovery cycle can be achieved. This efficiency is related to typical climate condition of July in the afternoon, while all the electrical energy, cooling load and 40 percent of hot water demand could be provided by this cycle. About 49 percent of input exergy can be efficiently recovered for energy requirements of building. Generator in absorption chiller and SOFC are the most destructive components of exergy in this system. 相似文献
15.
An integrated process of biomass gasification and solid oxide fuel cells (SOFC) is investigated using energy and exergy analyses. The performance of the system is assessed by calculating several parameters such as electrical efficiency, combined heat and power efficiency, power to heat ratio, exergy destruction ratio, and exergy efficiency. A performance comparison of power systems for different gasification agents is given by thermodynamic analysis. Exergy analysis is applied to investigate exergy destruction in components in the power systems. When using oxygen-enriched air as gasification agent, the gasifier reactor causes the greatest exergy destruction. About 29% of the chemical energy of the biomass is converted into net electric power, while about 17% of it is used to for producing hot water for district heating purposes. The total exergy efficiency of combined heat and power is 29%. For the case in which steam as the gasification agent, the highest exergy destruction lies in the air preheater due to the great temperature difference between the hot and cold side. The net electrical efficiency is about 40%. The exergy combined heat and power efficiency is above 36%, which is higher than that when air or oxygen-enriched air as gasification agent. 相似文献
16.
Decentralized generation of electricity with solid oxide fuel cells from centrally converted biomass
A thermodynamic evaluation of different energy conversion chains based on centralized biomass gasification and decentralized heat and power production by a solid oxide fuel cell (SOFC) has been performed. Three different chains have been evaluated, the main difference between the chains is the secondary fuel produced via biomass gasification. The secondary fuels considered are hydrogen, synthetic natural gas (SNG) and syngas. These fuels are assumed to be distributed through a transport and distribution grid to the micro-combined heat and power (μ-CHP) systems based on a SOFC and a heat pump. 相似文献
17.
《International Journal of Hydrogen Energy》2023,48(47):18064-18082
The active use of fuel cells and solar energy in power generation systems can help reduce fossil energy consumption and improve the work capacity of the system, which is an important means to achieve the goal of “carbon neutrality”. In this study, novel solid oxide fuel cell-integrated solar combined cycle systems with different solar integration modes are proposed and investigated. The thermodynamic, environmental and economic performances of new systems with different solar collector integration modes are evaluated using the exergoeconomic theory and environmental performance analysis. The results show that when the new system uses trough solar collectors to replace part of the heating load of the second-stage high-pressure economizer and high-pressure boiler drum, the system has the highest exergy efficiency (52.91%), the lowest unit exergoeconomic cost (0.102109 $/kWh) and the lowest specific CO2 emission rate (475.27 g/kWh). When the operating conditions of the system remain unchanged, this solar energy integration mode has the highest solar-to-electricity efficiency (26.69%) as well as thermal-to-electricity efficiency (44.22%), and can obtain the best profit in the same operating life. The new system can attain maximum energy efficiency and optimal economic benefits by using this solar energy integration mode. 相似文献
18.
To improve the efficiency of the diffusivity measurement in solid oxide fuel cells (SOFCs), a bi-sensor electrochemical cell is proposed and analyzed. The cell consists of an oxygen pump and two oxygen sensors. This bi-sensor cell doubles the efficiency of binary diffusivity measurements in both porous anodes and cathodes in SOFCs. The design provides an efficient platform to estimate the electrode limiting current density (LCD) and concentration polarization (CP) in SOFCs. Mechanism of measuring the CP with different electrode configurations was discussed in depth. The design was verified by studying the effect of electrode thickness on the CPs at different operating temperatures. 相似文献
19.
Chuan WangXianshuang Xin Yanjie XuXiaofeng Ye Lijun YuShaorong Wang Tinglian Wen 《Journal of power sources》2011,196(8):3841-3845
The electrochemical performance of LSM-Pd composite material as current collector of SOFC cathode is studied on (La0.8Sr0.2)0.9MnO3 (LSM90) cathode. The influence of Pd content on contact resistance is investigated. The investigation shows that the contact resistance of LSM-Pd is about 20 mΩ cm2 at 750 °C when the composite contains 8 wt% Pd, and it could be comparable to pure Pt. The ohmic resistance of a single cell using LSM-Pd composite is about 255 mΩ cm2 that contains 4 wt% Pd as current collector, this value is close to that of a cell using expensive Pt paste as current collector. 相似文献
20.
Mahrokh Samavati Andrew Martin Vera Nemanova Massimo Santarelli 《International Journal of Hydrogen Energy》2018,43(10):4785-4803
A novel integrated renewable-based energy system for production of synthetic diesel is proposed and simulated in this study. This system merges solid oxide electrolyser (SOE), entrained gasification (EG) and Fischer-Tropsch (FT) technologies. Two case scenarios are considered here. In the first case, the electrolyser unite produce syngas through co-electrolysis of steam and carbon dioxide, while in the second case only steam is electrolyzed. The effects of SOEC and EG operating pressure and temperatures on the system performance in each case are investigated and compared. It is shown that the operating condition of electrolyser subsystem has a more considerable effect on the performance of the integrated system as compared to the gasification subsystem. Also waste heat recovery results in about 43 and 2 percentage point increase in energy and exergy efficiency, respectively. It is also shown that internal recovering of oxygen has the best effect on the system performance. 相似文献