首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Highly efficient oxygen evolution reaction (OER) on noble metal-free catalysts is a major challenge for green hydrogen production. We report herein a rational preparation strategy for MOF-derived chalcogenide electrocatalysts. The optimal sulfuration time is 12 h under the conditions of the theoretical Fe/Ni ratio of 1:1 and treatment temperature at 120 °C. In this case, the pyrite Fe0.75Ni0.25S2 nanorods combining with amorphous FeNiOOH formed in situ exhibit a low overpotential of 247 mV with a small Tafel slope of 47.6 mV dec?1 at a current density of 10 mA cm?2 in alkaline media along with high electrochemical stability for OER. The enhanced performance is derived from the synergistic effect between FeNi sulfide with favorable electrical conductivity and generated (oxy)hydroxides with high intrinsic activity. More importantly, the more active sites and appropriate mesoporous structure further facilitate electrocatalytic activity due to improved mass transfer. This facile synthesis method is a potential pathway for MOF derived highly efficient electrocatalysis for sustainable hydrogen product.  相似文献   

2.
It is accepted that the electrocatalytic activity is correlated to the morphology. Here, graphene oxide guiding nickel and iron layered double hydroxides hybrid arrays (GO-FeNi-LDH) are firstly fabricated by one-step electro-deposition method. The pretty 3D arrays with sheets vertically growing on nickel foam (NF) are highlighted by controlling the quantity of GO. Furthermore, the electron transfer from Ni, Fe to graphene is detected, making the metals and graphene in high valence and electron-rich state, respectively. The optimal GO-FeNi-LDH presents pretty morphology, defects, electron interactions and good conductivity. Therefore, to achieve 10 and 100 mA cm−2, it requires the overpotentials of 119, 210, 285 and 303 mV for HER and OER and excellent durability. Noticeably, the optimal GO-NiFe-LDH needs a cell voltage of 1.48 V to drive 10 mA cm−2 for the whole water splitting, which are lower than that of most of advanced electrocatalysts, endowing it in first-rank electrocatalyst.  相似文献   

3.
Oxygen evolution reaction (OER) is an essential process during electrochemical water-splitting. Due to its sluggish kinetics, low cost and highly efficient catalyst is invariably desired to decrease its overpotential for large-scale application. However, the overpotential of most advanced OER electrocatalysts is still more than 200 mV at the current density of 10 mA cm?2. In this work, we constructed active layered NiFe double hydroxides with cation defects on self-supported three-dimensional (3D) CoNi nitrogen-doped carbon nanotube composite substrate as integrated OER catalyst. Strikingly, electrochemical measurements showed that the optimized sample exhibited outstanding OER activity with low overpotentials of 178 and 268 mV at the current densities of 10 and 100 mA cm?2 in alkaline environment, alongside a good durability. The excellent OER performance was ascribed to the strongly synergistic effect of intrinsically active NiFe double hydroxide layers with abundant cation vacancies and 3D carbon nanotube composite substrate with good conductivity and various functional moieties, thus facilitating the electrocatalytic kinetic.  相似文献   

4.
It is an inevitable choice to find efficient and economically-friendly electrocatalysts to reduce the high overpotential of oxygen evolution reaction (OER), which is the key to improve the energy conversion efficiency of water splitting. Herein, we synthesized Cu2S/Ni3S2 catalysts on nickel foam (NF) with different molar ratios of Ni/Cu by a simple two-step hydrothermal method. Cu2S/Ni3S2-0.5@NF (CS/NS-0.5@NF) effectively reduces the overpotential of OER, displaying small overpotentials (237 mV@100 mA cm?2 and 280 mV@500 mA cm?2) in an alkaline solution, along with a low Tafel slope of 44 mV dec?1. CS/NS-0.5@NF also presents an excellent durability at a relatively high current density of 100 mA cm?2 for 100 h. The excellent performance is benefited by the prominent structural advantages and desirable compositions. The nanosheet has a high electrochemical active surface area and the porous structure is conducive to electrolyte penetration and product release. This work provides an economically-friendly Cu-based sulfide catalyst for effective electrosynthesis of OER.  相似文献   

5.
An ongoing challenge still lies in the exploration of proficient electrocatalysts from earth-abundant non-precious metals instead of noble metal-based catalysts for clean hydrogen energy through large-Scale electrochemical water splitting. However, developing a non-precious transition metals based, stable electrocatalyst for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) is important challenge for modern energy conversion technology. In this report Vanadium doped bimetallic nickel-iron nanoarray, fabricated by carbon supported architecture through carbonization process for electrochemical water splitting. Three types of catalysts were prepared in different molar ratio of Ni/Fe. The electrocatalytic performance demonstrated that the catalyst with equal mole ratio (0.06:0.06) of Ni/Fe possess high catalytic activity for both OER and HER in alkaline and acidic medium. Besides, our findings revealed that the doping of vanadium could play a strong synergetic effect with Ni/Fe, which provide a small overpotential of 90 mV and 210 mV at 10 mA cm?2 for HER and OER respectively compared to the other two catalyst counterparts. Also, the catalyst with 1:1 (Ni/Fe) molar ratio showed a high current density of 208 mA cm?2 for HER at 0.5 M H2SO4 and 579 mA cm?2 for OER at 1 M KOH solution, the both current densities are much higher than the other two catalysts (different Ni/Fe ratio). In addition, the presented catalysts showed extremely good durability, reflecting in more than 20 h of consistent Chronoamprometry study at fixed overpotential η = 250 mV without any visible voltage elevation. Similarly, the (Ni/Fe) equal ratio catalyst showed better corrosion potential 0.209 V vs Ag/AgCl and lower current density 0.594 × 10?12 A cm?2 in high alkaline medium. The V-doping, MOF/GO surface defects are significantly increased the corrosion potential of the V-NixFey-MOF/GO electrocatalyst. Besides, the water electrolyzed products were analysed by gas chromatography to get clear insights on the formed H2 and O2 products.  相似文献   

6.
It is of great significance to develop the nonprecious metal oxide electrocatalysts toward oxygen evolution reaction (OER) for water splitting. Herein we report an in-situ growth of the ternary NiCoFe-layered double hydroxide nanosheets on surface etching nickel foam (NiCoFe LDHs/NF) without adding any nickel precursor. In this method, etching Ni matrix by Fe3+ not only provides the slowly released nickel ions, but also intensifies the Fe–Ni interaction between the directly grown active species and Ni foam. Therefore the composition, electronic structure, and morphology of the electrocatalysts can be easily regulated only by adjusting Co2+:Fe3+ ratio in the precursor solution. The obtained NiCo1Fe1 LDH/NF, which is formed in 1:1 Co2+:Fe3+ solution, has highest content of Ni3+ and Co3+ active sites and the largest electrochemical active area. It exhibits an outstanding OER performance with a small overpotential of 231 mV at 10 mA cm?2 and excellent durability at 50 mA cm?2 in 1.0 M KOH solution.  相似文献   

7.
Efficient electrocatalyst for alkaline oxygen evolution reaction is the critical core to the wide application of metal-air energy storage and water electrolysis hydrogen energy. Therefore, appropriate design of highly active and stable non-noble metal oxygen evolution electrocatalyst with good electronic structure and multilevel structure is both a goal and a challenge. Here, we report a Fe–Ni2P electrocatalyst (NiFeP-MOF) with multilevel structure, which was obtained by anion exchange on the basis of Fe–Ni(OH)2 (NiFe-MOF) grown on nickel foam in situ by solvothermal method. As expected, Fe substitution regulates the Ni oxidation state in the NiFeP-MOF and realizes electronic structure coupling, showing a highly active and stable oxygen evolution reaction (OER) in alkaline electrolyte solution. Specifically, the NiFeP-MOF demonstrates an ultralow overpotentials (232 mV, 10 mA cm?2; 267 mV 100 mA cm?2), respectively, an extremely small Tafel slope (34 mV dec?1). Separately, the electrocatalyst shows an excellent cycle stability at 10 mA cm?2 for 12 h (43,200 s). More importantly, this work come up with an available policy for the preparation of excellent alkaline hydrolysis electrolysis catalysts and air cathodes with excellent performance.  相似文献   

8.
Low-cost yet high-efficiency oxygen evolution reaction (OER) catalysts have attracted ardent attention to speed up the development of water electrolysis. Recent researches have shown that layered double hydroxides (LDH) are promising candidates towards OER, but further improvement is still highly demanded for its large-scale practical application in water splitting. Herein, we report a 3D P-doped MoO3/FeCo LDH/NF (P–MoO3/FeCo LDH/NF) ultrathin nanosheet heterostructure electrocatalyst with an extremely low overpotentials of 225 mV for delivering a current density of 10 mA cm?2 for OER and a great durability for at least 80 h by a simple one-step hydrothermal method. Extraordinarily, the P–MoO3/FeCo LDH catalyst achieves a high current density of 300 mA cm?2 and even 350 mA cm?2 at an extremely low overpotential of 297 mV and 302 mV, respectively, which is crucial for the water electrolysis industry. The remarkable performance may be attributed to that the heterostructure between P–MoO3 and FeCo LDH not only optimizes electronic structure, thus inducing electron transfer from P–MoO3 to FeCo LDH and then realizing fast electron transfer rates, but also produces more catalytic active sites. Moreover, the synergetic effect between MoO3 and FeCo LDH also plays an essential role for enhancing the catalytic performances. This work explores the effect of phosphomolybdic acid on the structure, composition and performances of FeCo LDH catalysts, and also provides a simple and cost-effective way to prepare high-efficiency and low-cost layered double hydroxide electrocatalysts for OER.  相似文献   

9.
The design and development of low-cost, abundant reserves, high catalytic activity and durability bifunctional electrocatalysts for water splitting are of great significance. Here, simple hydrothermal and hydrogen reduction methods were used to fabricate a uniform distribution of Fe-doped MoO2/MoO3 sheets with abundant oxygen vacancies and heterojunctions on etched nickel foam (ENF). The Fe– MoO2/MoO3/ENF exhibited a small overpotential of 36 mV at 10 mA cm−2 for hydrogen evolution reaction (HER), an excellent oxygen evolution reaction (OER) overpotential of 310 mV at 100 mA cm−2 and outstanding stabilities of 95 h and 120 h for the HER and OER, respectively. As both cathode and anode catalysts, the heterogeneously structured Fe– MoO2/MoO3/ENF required a low cell voltage of 1.57 V at 10 mA cm−2. Density functional theory (DFT) calculations show that Fe doping and MoO2/MoO3 heterojunctions can significantly reduce the band gap of the electrode, accelerate electron transport and reduce the potential barrier for water splitting. This work provides a new approach for designing metal ion doping and heterostructure formation that may be adapted to transition metal oxides for water splitting.  相似文献   

10.
The development of cost-effective, highly efficient and robust electrodes for oxygen evolution reaction (OER) is greatly significant for water-electrolysis to produce hydrogen. In this paper, we report a stainless steel fiber felt (SSF) electrode with greatly enhanced OER catalytic performance and durability. The SSF is directly treated by cyclic voltammetry (CV) method in alkaline electrolyte, which is more facile and convenient than the traditional measures. The characterization results of X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy indicate that an ultra-thin layer composed of Fe/Ni/Cr hydroxides/oxides with 3D open nanoporous structure is formed on the surface of SSF after CV treatment. The electrochemical tests show that the prepared SSF electrode displays a very low overpotential of 230 mV at 10 mA cm−2, a small Tafel slope of 44 mV dec−1 and good long-term durability of 550 h in 1 M KOH. The excellent OER performance of SSF electrode is contributed to the formation of hybrid metal hydroxides/oxides on its surface via in situ self-growth by electrochemical induction. Furthermore, the electrode only requires an overpotential of 340 mV at 10 mA cm−2 in 0.5 M Na2CO3/NaHCO3 solution. It is expectable that the modified SSF will be a promising catalysis electrode for water-electrolysis in large-scale commercial production.  相似文献   

11.
A new type of highly active and cost-effective nanoporous W-doped Ni–Fe–P catalyst on nickel foam (NF) was synthesized by a facile electroless plating method. The W-doped Ni–Fe–P/NF catalysts exhibit extraordinary catalytic activity for hydrogen evolution reaction (HER) in alkaline media, capable of yielding a current density of −10 mA cm−2 at an overpotential of only 68 mV. Furthermore, the catalysts also show efficient activity towards oxygen evolution reaction (OER) with an overpotential of 210 mV at j = 10 mA cm−2 as well. The W-doped Ni–Fe–P/NF electrocatalyst exhibits a long-term durability over 13 h test.  相似文献   

12.
The proper construction of high efficiency, low-cost, earth-abundant oxygen evolution reaction (OER) catalyst is essential for hydrogen formation by water splitting. A novel electrocatalyst with highly active OER performance was manufactured by a simple electroless deposition method of Ni-Fe-P-WO3 on nickel foam (NF). Benefiting from outstanding mass transfer capability of Ni-Fe-P-WO3/NF heterogeneous structure, abundance of active sites in the amorphous architecture and etc., the Ni-Fe-P-WO3/NF shows extremely superb electrocatalytic properties compare to noble metal catalyst IrO2/NF for OER, which needs an overpotential of only 218 mV in 1.0 M KOH solution to achieve the current density of 10 mA cm?2. It also has remarkable OER activity at high current density that only needs 298 mV to attain 100 mA cm?2 current density. Moreover, the Ni-Fe-P-WO3/NF has low Tafel slope of 42 mV dec?1. This study offers a novel approach to the production of OER multiphase electrocatalysts from oxides and alloys.  相似文献   

13.
Developing efficient oxygen evolution reaction (OER) electrocatalysts with earth-abundant elements is very important for sustainable H2 generation via electrochemical water splitting. Here we design a crystalline-amorphous Ni–Fe–Al hybrid phosphides nanosheet arrays grown on NiFe foam for efficient OER application. Dynamic surface reorganization of phosphides at anodic/cathodic polarizations is probed by in situ Raman spectroscopy. The reconstructed amorphous Ni(Fe)OOH species are determined as the active phases that facilitate the OER process. This unique electrode shows highly catalytic activity toward water oxidation, achieving the current densities of 10 and 100 mA cm?2 at 181 and 214 mV in 1 M KOH, respectively. Meanwhile, it also exhibits excellent stability at a large current density of 100 mA cm?2 for over 60 h. This work reveals the dynamic structural transformation of pre-catalyst in realistic conditions and highlights the important role of oxyhydroxides as real reactive species in OER process with high activity.  相似文献   

14.
Alkaline water electrolysis is a promising strategy for the production of hydrogen and oxygen. However, developing high-efficiency non-precious electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is still a big challenge. Here, we report a nickel foam-based electrode coated with NiCoV-LDH and NiCo-LDH nanosheets (denoted as NiCo-LDH@NiCoV-LDH/NF) by a two-step method for efficient water splitting performance. The NiCo-LDH@NiCoV-LDH/NF with unique nanosheet-on-nanosheet construction can enlarge the electrochemical active specific surface area greatly, and thus accelerate the charge transfer of electrocatalytic reactions. Besides, the doping of vanadium could also improve the OER performance. The electrode only requires a low overpotential for OER (260 mV at 100 mA cm?2), and HER (80 mV at 10 mA cm?2) reactions in 1.0 mol/L KOH solution at room temperature. Furthermore, in the two-electrode water splitting test, a current density of 10 mA cm?2 was achieved at 1.55 V using 1.0 mol/L KOH solution, with excellent durability of 40 h. This work provided a facile method for developing new bifunctional catalysts.  相似文献   

15.
Owing to the efficient modulation of the electronic structure of nanomaterials, rare earth elements introduction as promoters into nanomaterials has attracted great attention in oxygen evolution reaction (OER). This work demonstrates the cerium carbonate hydroxide (CeCO3OH) in situ grown on nickel foam (NF) supported NiFe layered double hydroxide (LDH) as a novel promoter in OER process. The hybrid material (Ni0.75Fe0.15Ce0.10/NF) possesses excellent performance for OER where the overpotentials at the current densities of 10 mA cm?2 and 100 mA cm?2 are 228 mV and 270 mV, respectively, along with the Tafel slope of 38.3 mV dec?1. Such performance is comparable in activity to many state-of-the-art electrocatalysts. The enhanced performance in the NiFe LDH can be ascribed to the synergetic interaction between CeCO3OH and NiFe LDH by utilizing the advantages of cerium and carbonate in OER. The novelty of our work is the exploration of CeCO3OH as a promoter to enhance the OER performance, which expands the application of cerium-based compounds in energy storage and conversion.  相似文献   

16.
Developing robust non-noble catalysts towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital for large-scale hydrogen production from electrochemical water splitting. Here, we synthesize Sn- and Fe-containing sulfides and oxyhydroxides anchored on nickel foam (SnFeSxOy/NF) using a solvothermal method, in which a heterostructure is generated between the sulfides and oxyhydroxides. The SnFeSxOy/NF exhibits low overpotentials of 85, 167, 249, and 324 mV at 10, 100, 500 and 1000 mA cm?2 for the HER, respectively, and a low overpotential of only 281 mV at 100 mA cm?2 for the OER. When it serves as both anode and cathode to assemble an electrolyzer, the cell voltage is only 1.69 V at 50 mA cm?2. The sulfides should be the efficient active species for the HER, while the oxyhydroxides are highly active for the OER. The unique sulfide/oxyhydroxide heterostructure facilitates charge transfer and lowers reaction barrier, thus promoting electrocatalytic processes.  相似文献   

17.
We report an in-situ construction method for the NiFe-based oxyhydroxide OER electrocatalyst supported on the nickel foam (NF) substrate with the polyaniline (PANI) interlayer by sequential electrochemical deposition steps (NF/PANI/NiFe–OH). The ultra-thin nanosheet for the nickel-iron (oxy)hydroxides tightly grown on the porous PANI exhibits the enhanced electrochemical characteristics associated with the promotion roles of the PANI layer, which increases the number of active sites, facilitates the charge transfer, and accelerates water transport across the interfaces of the electrode. The as-prepared NF/PANI/NiFe–OH has reliable lower overpotentials of 260, 340, and 490 mV without iR-correction at 50, 100, and 200 mA cm?2 of high current densities, respectively. The smaller Tafel slope, larger ECSA, and TOF values of the electrode reveal its high intrinsic activity. Moreover, the electrode shows good stability and durability without the damage of morphology, change of surface chemical state, and substantial loss of active components at high current density.  相似文献   

18.
Development of an inexpensive electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER) receives much traction recently. Herein, we report a facile one-pot ethyleneglycol (EG) mediated solvothermal synthesis of orthorhombic Co2P with particle size ~20–30 nm as an efficient HER and OER catalysts. Synthesis parameters like various solvents, temperatures, precursors ratios, and reaction time influences the formation of phase pure Co2P. Investigation of Co2P as an electrocatalyst for HER in acidic (0.5 M H2SO4) and alkaline medium (1.0 M KOH), furnishes low overpotential of 178 mV and 190 mV, respectively to achieve a 10 mA cm?2 current density with a long term stability and durability. As an OER catalyst in 1.0 M KOH, Co2P shows an overpotential of 364 mV at 10 mA cm?2 current density. Investigation of Co2P NP by XPS analysis after OER stability test under alkaline medium confirms the formation of amorphous cobalt oxyhydroxide (CoOOH) as an intermediate during OER process.  相似文献   

19.
Exploring efficient oxygen evolution reaction (OER) catalysts synthesized from low-cost and earth-abundant elements are crucial to the progression of water splitting. In this paper, NiFe layered double hydroxide (LDH) nanosheets were grown on Ni foam (NF) through a straightforward hydrothermal method. The Fe doping effects were systematically investigated by controlling Ni/Fe ratios and Fe valence states, and the in-depth influence mechanisms were discussed. The results indicate that, through controlling structure morphology and enhancing Ni2+ oxidation, NiFeIII(1:1)-LDH displays the best and outstanding OER performance, with a low over potential of 382 mV at 50 mA cm?2, a low Tafel slope of 31.1 mVdec?1 and only 20 mV increase after 10 h continuous test at 50 mA cm?2. To our knowledge, this is one of the best OER electrocatalysts in alkaline media to date. This work provides a facile and novel strategy for the fabrication of bimetallic LDH catalysts with desired structures and compositions.  相似文献   

20.
It is well proved that fabricating more defects on basal plane of layered double hydroxides (LDHs) is one of effective ways to boost the electrocatalytic performance for oxygen evolution reaction (OER). For the first time, the nickel iron LDHs (NiFe LDHs) with hierarchical morphology and abundant defects are simultaneously constructed by one-step electrodeposition (ED) strategy with easy operation, time-saving and green chemistry. Remarkably, the morphology is elaborately tailored by changing the species of doped anions which is unique. Also, the X-ray photoelectron spectroscopy (XPS) results elucidate that the Fe sites are in electron-rich state in LDHs which is revealed to enhance the catalytic activity strongly arising from the generation of oxygen vacancy. To deliver the current density of 10 mA cm−2, the optimal NiFe LDHs require the overpotential of 128, 106 mV for OER and hydrogen evolution reaction (HER), and achieve 100 mA cm−2 at the overpotential of 237, 242 mV, respectively. As a bifunctional electrocatalyst, the NiFe LDHs exhibit the current density of 10 mA cm−2 at a cell voltage of 1.55 V and 100 mA cm−2 at 1.76 V, which are lower than that of most of benchmarking materials reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号