首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green hydrogen produced from intermittent renewable energy sources is a key component on the way to a carbon neutral planet. In order to achieve the most sustainable, efficient and cost-effective solutions, it is necessary to match the dimensioning of the renewable energy source, the capacity of the hydrogen production and the size of the hydrogen storage to the hydrogen demand of the application.For optimized dimensioning of a PV powered hydrogen production system, fulfilling a specific hydrogen demand, a detailed plant simulation model has been developed. In this study the model was used to conduct a parameter study to optimize a plant that should serve 5 hydrogen fuel cell buses with a daily hydrogen demand of 90 kg overall with photovoltaics (PV) as renewable energy source. Furthermore, the influence of the parameters PV system size, electrolyser capacity and hydrogen storage size on the hydrogen production costs and other key indicators is investigated. The plant primarily uses the PV produced energy but can also use grid energy for production.The results show that the most cost-efficient design primarily depends on the grid electricity price that is available to supplement the PV system if necessary. Higher grid electricity prices make it economically sensible to invest into higher hydrogen production and storage capacity. For a grid electricity price of 200 €/MWh the most cost-efficient design was found to be a plant with a 2000 kWp PV system, an electrolyser with 360 kW capacity and a hydrogen storage of 575 kg.  相似文献   

2.
An optimal sizing methodology based on an energy approach is described and applied to grid-connected photovoltaic systems taking into account the photovoltaic module technology and inclination, the inverter type and the location. A model describing the efficiency for m-Si, p-Si, a-Si and CIS is used. The method has been applied on various meteorological stations in Bulgaria and Corsica (France). The main parameter affecting the sizing is the inverter efficiency curve. The influence of the PV module technology seems less important except for amorphous photovoltaic modules for which special remarks have been made. The inclination on the PV system influences the performances particularly when the inverter is undersized compared to the PV peak power.  相似文献   

3.
D. Gürzenich  H. -J. Wagner   《Energy》2004,29(12-15):2297
Studies of popular renewable energy systems show that cumulative energy demand (CED) can be understood as a kind of simplifying life cycle assessment [1] where the accounting of energy and material inputs is seen as part of an inventory analyses and the calculation of CED as a rough form of impact assessment.Within this research project, three grid-connected photovoltaic systems (sc-Si, pc-Si and a-Si based) are examined in regard to CED and cumulative emissions. The production of these systems was chosen to take place in seven European countries: Germany, France, Spain, Italy, Netherlands, Austria and Sweden.Due to the fact that electricity demand does play a major role in production of photovoltaics and that power generation differs throughout these countries CED varies from about 23,200 to 65,200 MJ/kWp. The cumulative emissions (CEm) were found to lie between about 900 and 4000 kg CO2/kWp, 1.9 and 5.5 kg NOx/kWp and 2.4 and 4.8 kg SO2/kWp.  相似文献   

4.
Photovoltaics cost has been declining following a 70% learning curve. Now the challenge is to bring down the cost of solar electricity to make it competitive with conventional sources within the next decade. In the long run, the module efficiencies tend to reach 80% of the champion cell efficiencies. Using a semiempirical methodology, it has been shown earlier that while the triple junction a-Si:H thin film technology is competitive, CIGS and CdTe thin film module technologies are highly competitive and presently offer the best approach for significantly exceeding the cost/performance levels of standard and non-standard crystalline Si PV technologies. Since 2006, the production of thin film solar cell in the U.S. has surpassed that of c-Si. At present, the production of CIGS PV modules lags considerably behind that of CdTe PV modules. This is mainly because of its complexity. Scale-up issues related to various CIGS preparation technologies such as co-evaporation, metallic precursor deposition by magnetron sputtering and non-vacuum techniques such as ink-jet printing, electroplating or doctor-blade technology followed by their selenization/sulfurization are discussed so as to assist the CIGS technology to attain its full potential. Besides the welcome announcements of large volume production, it is essential to achieve the production cost below $1/Wp in the near term and attain production speeds comparable to CdTe production speeds. Comparable production speeds are expected to be achieved within the next decade. This will enable reduction of CIGS module production costs to ∼65¢/Wp that would be comparable to the CdTe module projected production cost. Additionally CIGS will have a higher efficiency premium.  相似文献   

5.
Green hydrogen reduces carbon dioxide emission, advances the dependency on fossil fuels and improves the economy of the energy sector, especially in developing countries. Hydrogen is required for the green transportation sector and many other industrial applications. However, the high cost of green hydrogen production reduces the fast development of renewable energy projects based on hydrogen production. So, sizing by optimization is required to determine the optimum solutions for green hydrogen production. In this context, this paper aims to analyze three methods that can be developed and implemented for the production of green hydrogen for refueling stations using photovoltaic (PV) systems. Techno-economic models are adopted to calculate the Levelized Hydrogen Cost (LHC) for the PV grid-connected system, stand-alone PV system with batteries, and stand-alone PV system with fuel cells. The photovoltaic systems based green hydrogen refueling stations are optimized using Homer software. The optimization results of the Net Profit Cost (NPC), and the LHC permit the comparison of the three cases and the selection of the optimal solution. The analysis has shown that a 3 MWp grid-connected PV system represents a promising green hydrogen production at an LHC of 5.5 €/kg. The system produces 58 615 kg of green hydrogen per year reducing carbon dioxide emission by 8209 kg per year. The LHC in the stand-alone PV system with batteries, and stand-alone PV system with fuel cells are 5.74 €/kg and 7.38 €/kg, respectively.  相似文献   

6.
Alternative hydrogen production technologies are sought in part to reduce the greenhouse gas (GHG) emissions intensity compared with Steam Methane Reforming (SMR), currently the most commonly employed hydrogen production technology globally. This study investigates hydrogen production via High Temperature Steam Electrolysis (HTSE) in terms of GHG emissions and cost of hydrogen production using a combination of Aspen HYSYS® modelling and life cycle assessment. Results show that HTSE yields life cycle GHG emissions from 3 to 20 kg CO2e/kg H2 and costs from $2.5 to 5/kg H2, depending on the system parameters (e.g., energy source). A carbon price of $360/tonne CO2e is estimated to be required to make HTSE economically competitive with SMR. This is estimated to potentially decrease to $50/tonne CO2e with future technology advancements (e.g., fuel cell lifetime). The study offers insights for technology developers seeking to improve HTSE, and policy makers for decisions such as considering support for development of hydrogen production technologies.  相似文献   

7.
Hydrogen refueling infrastructures with on-site production from renewable sources are an interesting solution for assuring green hydrogen with zero CO2 emissions. The main problem of these stations development is the hydrogen cost that depends on both the plant size (hydrogen production capacity) and on the renewable source.In this study, a techno-economic assessment of on-site hydrogen refueling stations (HRS), based on grid-connected PV plants integrated with electrolysis units, has been performed. Different plant configurations, in terms of hydrogen production capacity (50 kg/day, 100 kg/day, 200 kg/day) and the electricity mix (different sharing of electricity supply between the grid and the PV plant), have been analyzed in terms of electric energy demands and costs.The study has been performed by considering the Italian scenario in terms of economic streams (i.e. electricity prices) and solar irradiation conditions.The levelized cost of hydrogen (LCOH), that is the more important indicator among the economic evaluation indexes, has been calculated for all configurations by estimating the investment costs, the operational and maintenance costs and the replacement costs.Results highlighted that the investment costs increase proportionally as the electricity mix changes from Full Grid operation (100% Grid) to Low Grid supply (25% Grid) and as the hydrogen production capacity grows, because of the increasing in the sizes of the PV plant and the HRS units. The operational and maintenance costs are the main contributor to the LCOH due to the annual cost of the electricity purchased from the grid.The calculated LCOH values range from 9.29 €/kg (200 kg/day, 50% Grid) to 12.48 €/kg (50 kg/day, 100% Grid).  相似文献   

8.
Large scale, low cost, and low carbon intensity hydrogen production is needed to reduce emissions in the energy and transportation sectors. We present a techno-economic analysis and life cycle assessment of natural gas pyrolysis technologies for hydrogen production, with carbon black (CB) as a co-product. Four designs were considered based on the source of heat to the pyrolysis system, the combustion medium, and use of carbon capture (CC) technology. The oxygen-fired-CB design with CC is the most attractive from financial and environmental perspectives, superior to a conventional steam methane reformer (SMR) process with CC. The estimated pre-tax minimum hydrogen selling prices for the pyrolysis technologies range between $1.08/kg and $2.43/kg when natural gas (NG) costs $3.76/GJ. Key advantages include near-zero onsite GHG emissions of the oxygen-fired-CB design with CC and up to 41% lower GHG emissions compared to the SMR + CC process. The results indicate that natural gas pyrolysis may be a feasible pathway for hydrogen production.  相似文献   

9.
Mine sites are an ideal candidate to be decarbonised through the installation of variable renewables and storage. However, the operation of mine sites is dependent on many factors, including mineral price, which can vary significantly, leading to periods of inactivity. Therefore, for sites that have invested in renewable generation and storage, there exists a potential of stranded assets, which negatively impact their business case, potentially reducing investment in such equipment and, therefore, decarbonisation potential. The current study therefore has investigated the potential of using variable renewable energy coupled with thermal energy storage and biodiesel to supply heat to a mine site. With the base case established, the economic impact of lower or no mine operations on the net present value were evaluated. To reduce the impact of mine turndown, the potential of installing a hydrogen production facility in an effort to utilise the stranded assets was also undertaken. Preliminary results show the base case to be very economical with a net present cost of $151.4 M after 30 operational years. This value was reduced to $45.7 M and -$81.1 M if the mine only operated at half capacity or did not operate at all, respectively. The addition of hydrogen production powered by the installed variable renewable generation resulted in a slightly better net present value of $174.7 M if the mine operated as normal for 30 years. For the two other cases, the installation of an electrolyser resulted in significantly better results than if it had not been installed for the half capacity and no operation cases with net present costs of $90.9 M and -$7.1 M, respectively. A sensitivity analysis on these results show that while the hydrogen production only plays a minor role in site savings, a price of between $1.1/kg to $2.0/kg is necessary for the system to be economically justifiable. Therefore, the current study shows that the addition of an electrolyser can significantly reduce the risk of stranded assets in fully renewable mine sites by providing an additional revenue stream during mine turndown events.  相似文献   

10.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

11.
The massive implementation of renewable energy requires sophisticated assessments considering the combination of feasible technology options. In this study, a techno-economic analysis was conducted for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. The installed capacity of each component technology was optimized for the wide range of unit costs of electricity from the PV, battery, and proton-exchange membrane electrolyzer. Leveling of PV output by battery, the necessary capacity of electrolyzer is suppressed and the operating ratio of electrolyzer increases. The battery-assist will result in a lower hydrogen production cost when the benefit associated with the smaller capacity and higher operation ratio of the electrolyzer exceeds the necessary investment for battery installation. The results from this study indicated the cost of hydrogen as low as 17 to 27 JPY/Nm3 using a combination of technologies and the achievement of ambitious individual cost targets for batteries, PV, and electrolyzers.  相似文献   

12.
Due to the environmental concerns caused by fossil fuels, renewable energy systems came into consideration. In this study, a renewable hybrid system based on ocean thermal, solar and wind energy sources were designed for power generation and hydrogen production. To analyze the system, a techno-economic model was exerted in order to calculate the exergy efficiency as well as the cost rate and the hydrogen production. The main parameters that affect the system performance were identified, and the impact of each parameter on the main outputs of the system was analyzed as well. The thermo-economic analysis showed that the most effective parameters on the exergy efficiency and total cost rate are the wind speed and solar collector area, respectively. To reach the optimum performance of the system, multi-objective optimization, by using genetic algorithm, was applied. The optimization was divided into two separate case studies; in case A, the cost rate and the exergy efficiency were considered as two objective functions; and in case B, the cost rate and the hydrogen production were assigned as two other objective functions. The optimization results of the case A showed that for the total cost rate of 30.5 $/h, the exergy efficiency could achieve 35.57%. While, the optimization of the case B showed that for the total cost rate of 28.06 $/h, the hydrogen production rate could reach 5.104 kg/h. Furthermore, after optimizing, an improvement in exergy efficiency was obtained, approximately 19%.  相似文献   

13.
Hydrogen is one of the energy carriers that can be produced using different techniques. Combining multiple energy sources can enhance hydrogen production and meet other electrical demands. The hybrid arrangement allows the produced hydrogen to be stored and used when the electrical energy sources are not adequate. In this study, utilizing the meteorological data was investigated using HOMER (Hybrid Optimization of Multiple Energy Resources) software for the optimal solution. The results demonstrated that the “best-optimized system has 270 kW of photovoltaic (PV), 1 unit of 300 kW of wind turbine (WT), 500 kW of electrolyzer, 100 kg/L of the hydrogen tank, 70 units of 1 kWh lithium-ion battery, and 472 kW of the converter. The selected hybrid energy system has the lowest Levelized cost of energy (LCOE), Levelized cost of hydrogen (LCOH), and net present cost (NPC) of $/kg 0.6208, $/kg 9.34, and $ 484,360.00 respectively which judged the system to be the best choice for the proposed hydrogen project in AI-Kharj. This investigation will help stakeholders and policymakers optimize hybrid energy systems that economically meet the hydrogen production and refueling station demands of the AI-Kharj community.  相似文献   

14.
The paper discusses the feasibility of the use solar energy into hydrogen production using a photovoltaic energy system in the four main cities of Iraq. An off-grid photovoltaic system with a capacity of 22.0 kWp, an 8.0 kW alkaline electrolyser, a hydrogen compressor, and a hydrogen tank were simulated for one year in order to generate hydrogen. A mathematical model of the proposed system behavior is presented using MATLAB/Simulink, considering nine years from the 2021 to 2030 project span using hourly experimental weather data. The outcomes demonstrated that the annual hydrogen production ranged from 1713.92 kg up to 1891.12 kg, oxygen production ranged from 1199.74 to 1323.78 kg, and water consumption ranged from 7139.91 L to 7877.29 L. The hydrogen evaluated costs equal to $3.79/kg. The results show that the optimum site for solar hydrogen production systems can be established in the midwest of Iraq and in other cities with similar climates, especially those that get a lot of sunlight.  相似文献   

15.
The present paper has disseminated the design approach, project implementation, and economics of a nano-grid system. The deployment of the system is envisioned to acculturate the renewable technology into Indian society by field-on-laboratory demonstration (FOLD) and “bridge the gaps between research, development, and implementation.” The system consists of a solar photovoltaic (PV) (2.4 kWp), a wind turbine (3.2 kWp), and a battery bank (400 Ah). Initially, a prefeasibility study is conducted using the well-established HOMER (hybrid optimization model for electric renewable) software developed by the National Renewable Energy Laboratory (NREL), USA. The feasibility study indicates that the optimal capacity for the nano-grid system consists of a 2.16 kWp solar PV, a 3 kWp wind turbine, a 1.44 kW inverter, and a 24 kWh battery bank. The total net present cost (TNPC) and cost of energy (COE) of the system are US$20789.85 and US$0.673/kWh, respectively. However, the hybrid system consisting of a 2.4 kWp of solar PV, a 3.2 kWp of wind turbine, a 3 kVA of inverter, and a 400 Ah of battery bank has been installed due to unavailability of system components of desired values and to enhance the reliability of the system. The TNPC and COE of the system installed are found to be US$20073.63 and US$0.635/kWh, respectively and both costs are largely influenced by battery cost. Besides, this paper has illustrated the installation details of each component as well as of the system. Moreover, it has discussed the detailed cost breakup of the system. Furthermore, the performance of the system has been investigated and validated with the simulation results. It is observed that the power generated from the PV system is quite significant and is almost uniform over the year. Contrary to this, a trivial wind velocity prevails over the year apart from the month of April, May, and June, so does the power yield. This research demonstration provides a pathway for future planning of scaled-up hybrid energy systems or microgrid in this region of India or regions of similar topography.  相似文献   

16.
Many universities have plans to reduce campus energy consumption with developed energy efficiency strategies, supply the energy needs of the university campus with renewable energy and create a green campus. In order to serve this purpose, this study focuses on the simulation of the installation of an on-grid photovoltaic (PV) power system at the Vocational Colleges Campus, Hitit University. On the other hand, the integration of the simulated PV system with a gas fired-trigeneration system is discussed. Moreover, the study explores opportunities for solar hydrogen generation without energy storage on campus. For the PV system simulation, three different scenarios were created by using web-based PV system design software (HelioScope). Installed powers in the simulation were found as 94.2 kWe, 123.9 kWe, and 157.5 kWe for the low scenario (on the rooftop), high scenario (on the rooftop), and the high + PV canopy arrays scenario (on the rooftop and an outdoor parking area), respectively. The levelized cost of electricity (LCOE) values were 0.061 $/kWh, 0.065 $/kWh, and 0.063 $/kWh for the low scenario, high scenario, and the scenario including PV canopy, respectively. The energy payback time is found to be 6.47–6.94 years for the 20–25 years lifetime of the PV plant. The simulation results showed that the PV system could support it by generating additional electrical energy up to 25% of the existing system. The campus can reduce GHG emissions of 1546–2272 tonnes-CO2eq, which is equivalent to 142–209 ha of forest-absorbing carbon unused during the life of the PV system. Depending on the production and consumption methods utilized on campus, which is a location with relatively large solar potential, the levelized cost of hydrogen (LCOH) of hydrogen generation ranged from 0.054 $/kWhH2 (1.78 $/kgH2) to 0.103 $/kWhH2 (3.4 $/kgH2). Consequently, with proper planning and design, a grid-connected PV-trigeneration-hydrogen generation hybrid system on a university campus may operate successfully.  相似文献   

17.
Reducing greenhouse gas emissions is an important task to reduce the adverse effects of climate change. A large portion of greenhouse gas emissions apparently originates from the transportation sector. Therefore, adopting cleaner technologies with lower emission footprints has become vital. For this reason, in this study, a life cycle impact analysis of hydrogen production technologies as an alternative to fossil fuels and the utilization of hydrogen in fuel cell electric buses is carried out. According to the results of this study, the operational contributions of internal combustion engines have a significant impact on life cycle impact analysis indicators. The global warming potentials of clean hydrogen production technologies result in much lower results compared to conventional hydrogen production technologies. Also, almost all indicators for biohydrogen production technologiess yield lower results because of the wastewater removal. The global warming potential results of hydrogen production methods are found to be 6.8, 1.9, 2.1, 0.5, 0.2, and 7.9 kg CO2 eq./kg H2 for PV electrolysis, wind electrolysis, high temperature electrolysis, dark fermentation, photo fermentation and conventional hydrogen production, respectively. However, the chemicals used in PV and wind turbine production increased the ecotoxicological indicators. On the other hand, hydrogen utilization in buses is a better option environmentally. The global warming potentials for PV electrolysis, wind electrolysis, high temperature electrolysis, dark fermentation, photo fermentation, conventional hydrogen, compressed natural gas bus, and diesel bus are found to be 0.060, 0.016, 0.018, 0.007, 0.006, 0.053, 0.082, and 0.125 kg CO2 eq./p.km, respectively. The results are especially important in terms of reducing the effects at the source and optimizing the systems.  相似文献   

18.
The interest in non-electric applications of nuclear energy is rising ranging from hydrogen production, district heating, seawater desalination, and various industrial applications to provide long-term answers for a variety of energy issues that both present and future generations will confront. Hydrogen is a dynamic fuel that can be used across all industrial sectors to lower carbon intensity. This study, therefore, aims at estimating the cost of nuclear hydrogen production from some light water reactors using International Atomic Energy Agency (IAEA) Hydrogen Calculator (HydCalc) program and comparing the result with similar existing studies conducted by other scholars using the Hydrogen Economic Evaluation Program (HEEP) program. The study employs six existing Light Water Reactors (LWRs) comprised of Korea Advanced Power Reactor 1400 MW electricity (APR1400), Russian VVER-1200, Davis-Besse Nuclear Power Plant in Ohio, Prairie Island NPP in Minnesota, Nine Mile Point NPP in New York, and Arizona Public Service's Palo Verde NPP to evaluate the Levelized cost of nuclear hydrogen production. Estimation of hydrogen demand was performed without carbon dioxide (CO2) tax since nuclear power has zero CO2 emission. The Levelized costs obtained using IAEA HydCalc and HEEP Programme were compared as follows; APR1400 cost are 2.6$/kg and 3.18$/kg, VVER1200 cost are 3.8$/kg and 3.44$/kg; Exelon cost are 1.7$/kg and 4.85$/kg; Davis Besse cost are 3.9$/kg and 3.09$/kg; Parlo Verde cost are 3.5$/kg and 4.77$/kg; Xcel Energy cost are 3.63$/kg and 0.69$/kg. The cost of hydrogen production using HEEP for Xcel Energy's Prairie Island NPP is 0.69 $/kg. This is because the reactor utilizes High Temperature Steam Electrolysis, method of hydrogen production, while the other methods employs Low Temperature Electrolysis. The results shows that the final price of the hydrogen for each reactor technology depends not only on the production method but also on the cost of the nuclear power plant and the production rate of the hydrogen plant.  相似文献   

19.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

20.
A source of hydrogen is needed in the developing hydrogen economy, and many technologies are available for producing hydrogen from both conventional and alternative energy resources such as natural gas, coal, atoms, sunlight, wind, and biomass. The following paper summarizes the economics of producing hydrogen from each of these sources and gives an overview of the energy resource for each feedstock. The results of the analysis show that the most economical sources of hydrogen are coal and natural gas, with an estimated cost of 0.36–1.83 $/kg and 2.48–3.17 $/kg for each energy source, respectively. Alternative energy provides hydrogen at a higher cost; however, fossil fuel feedstock costs are increasing as technology enhancements are decreasing the cost of alternative energy sources, and therefore alternative energy sources may become more economical in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号