首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design and development of cost-effective and highly efficient oxygen evolution reaction (OER) electrocatalysts are urgently desirable during the water-splitting process. Here, NixFe80-xB20 (x = 70, 60, 50, 40, 30, hereafter referred to as NFB) amorphous alloys, with high mechanical strength, excellent corrosion resistance, and unique atomic structure, are fabricated as efficient water oxidation electrocatalysts in alkaline solutions. Ni40Fe40B20 amorphous ribbons achieve only 319 mV of overpotential at 10 mA·cm?2 with a Tafel slope of 56 mV dec?1 and exhibit excellent long-term stability for 24 h at 10 mA·cm?2 and 100 mA·cm?2 in 1 M KOH solution, which outperform the commercial RuO2 electrocatalyst. It is worth noting that the OER performance of NixFe80-xB20 amorphous electrocatalysts after long-term chronopotentiometry test displays more effectively, which can be ascribed to the surface construction. Meanwhile, the analysis of the morphology and structure of the electrocatalysts reveal that continuous oxidation during the OER process induces the structural reorganization on the surface of the electrocatalysts, which can enhance the electron transfer process and adsorption of the reaction intermediates to optimize the OER performance. This study provides a shred of evidence for surface self-reconstruction of NiFeB amorphous alloys electrocatalysts during the OER process and promotes the application of amorphous alloys as functional materials in the water-splitting field.  相似文献   

2.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

3.
The exploration of highly efficient non-precious electrocatalysts is essential for water splitting devices. Herein, we synthesized CoS2–MoS2 multi-shelled hollow spheres (MSHSs) as efficient electrocatalysts both for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using a Schiff base coordination polymer (CP). Co-CP solid spheres were converted to Co3O4 MSHSs by sintering in air. CoS2–MoS2 MSHSs were obtained by a solvothermal reaction of Co3O4 MSHSs and MoS42− anions. CoS2–MoS2 MSHSs have a high specific surface area of 73.5 m2g-1. Due to the synergistic effect between the CoS2 and MoS2, the electrode of CoS2–MoS2 MSHSs shows low overpotential of 109 mV with Tafel slope of 52.0 mV dec−1 for HER, as well as a low overpotential of 288 mV with Tafel slope of 62.1 mV dec−1 for OER at a current density of 10 mA cm−2 in alkaline solution. The corresponding two-electrode system needs a potential of 1.61 V (vs. RHE) to obtain anodic current density of 10 mA cm−2 for OER and maintains excellent stability for 10 h.  相似文献   

4.
The rational design of catalysts with low cost, high efficient and robust stability toward oxygen evolution reaction (OER) is greatly desired but remains a formidable challenge. In this work, a one-pot, spatially confined strategy was reported to fabricate ultrathin NiFe layered double hydroxide (NiFe-LDH) nanosheets interconnected by ultrafine, strong carbon nanofibers (CNFs) network. The as-fabricated NiFe-LDH/CNFs catalyst exhibits enhanced OER catalytic activity in terms of low overpotential of 230 mV to obtain an OER current density of 10 mA cm?2 and very small Tafel slope of 34 mV dec?1, outperforming pure NiFe-LDH nanosheets assembly, commercial RuO2, and most non-noble metal catalysts ever reported. It also delivers an excellent structural and electrocatalytic stability upon the long-term OER operation at a large current of 30 mA cm?2 for 40 h. Furthermore, the cell assembled by using NiFe-LDH/CNFs and commercial Pt/C as anode (+) and cathode (?) ((+)NiFe-LDH/CNFs||Pt/C(?)) only requires a potential of 1.50 V to deliver the water splitting current of 10 mA cm?2, 130 mV lower than that of (+)RuO2||Pt/C(?) couple, demonstrating great potential for applications in cost-efficient water splitting devices.  相似文献   

5.
《Journal of power sources》2005,141(1):198-203
The relationship between the structure-specific capacitance (F g−1) of a composite electrode consisting of activated coconut-shell carbon and hydrous ruthenium oxide (RuOx(OH)y) has been evaluated by impregnating various amounts of RuOx(OH)y into activated carbon that is specially prepared with optimum pore-size distribution. The composite electrode shows an enhanced specific capacitance of 250 F g−1 in 1 M H2SO4 with 9 wt.% ruthenium incorporated. Chemical and structural characterization of the composites reveals a homogeneous distribution of amorphous RuOx(OH)y throughout the porous network of the activated carbon. Electrochemical characterization indicates an almost linear dependence of capacitance on the amount of ruthenium owing to its pseudocapacitive nature.  相似文献   

6.
The rational design and synthesis of highly efficient, precious metal-free electrocatalysts in the promotion of electrochemical water oxidation is essential for the sustainable use of renewable energy. Herein, an integrated, S-doped MnOx/Mn film developed on carbon paper (CP) formed by a two-step transformation approach that includes template-free electrodeposition and in-situ electrochemical oxidation is employed as an efficient oxygen evolution reaction (OER) electrocatalyst. The doping of S and in-situ electro-oxidation lead to a tailored electronic structure and phase composition, which endow the composite electrode with a significantly enhanced OER catalytic performance. This S-doped integrated electrode perfectly combines highly active MnOx outer layers with conductive metallic Mn inner layers to offer abundant catalytic interfaces and electronic paths, leading to favorable reaction kinetics. As a result, the optimal S-doped MnOx/Mn/CP offers a low overpotential of 435 mV at 10 mA cm?2 with a Tafel slope of 89.97 mV dec?1 as well as improved stability. Impressively, a highly intrinsic catalytic activity with a turnover frequency of 0.0112 s?1 is obtained for S-doped MnOx/Mn/CP, which is 4.2-fold higher than that of MnOx/Mn/CP. S doping plays a critical role in stabilizing the MnIIIOx active phase and is ultimately responsible for the enhanced catalytic performance. This work provides an integrated design concept and S doping approach suitable for boosting the OER catalytic performance of MnOx.  相似文献   

7.
OER is a four-electron-proton coupling reaction, generating a high kinetic barrier and suffering from high overpotential and low efficiency. Developing long-time operational stability the oxygen evolution electrocatalysts under large catalytic current densities is a crucial step for efficient OER. Herein, an amorphous NiCo(OH)x modified Co-MOF octahedron assembled by ultra-thin nanosheets catalysts grow on nickel foam (labelled as NiCo(OH)x@Co-MOF/NF) with hierarchical structure is synthesized by a mild interfacial nucleation strategy. The obtained material exhibits an excellent catalytic activity and stability toward OER, a low overpotential of only 210 and 531 mV can be required at 10 and 1000 mA cm ?2 current density with remarkable durability for >24 h and a smaller Tafel slope of 43 mV dec ?1 in alkaline aqueous solution. The experimental studies demonstrate that the modification of amorphous NiCo(OH)x improves the electrical conductivity of Co-MOF. In addition, the hierarchical structure assembled by ultra-thin nanosheets possess a larger surface area and expose number of active sites, enhancing the charge transfer rate and catalytic performance.  相似文献   

8.
Electrocatalytic water splitting is an emerging technology for the development of maintainable hydrogen energy. It remains challenging to manufacture a stable, efficient, and cost-effective electrocatalyst that can conquer the slow reaction kinetics of water electrolysis. Herein, A metal-organic framework (MOF) based material is manufactured and productively catalyze the oxygen evolution reaction (OER). The introduction of elemental nickel enhances the catalytic activity of Co-FcDA. The results show that single Ni was well doped in the CoNi-FcDA catalysts and the doping of Ni has a great influence on the OER activity of CoNi-FcDA catalysts. CoNi-FcDA displayed a low overpotential of 241 mV to arrive at the benchmark current density (10 mA cm?2) with a remarkably small Tafel slope of 78.63 mV dec?1. It surpassed the state-of-the-art electrocatalyst for OER, that is, RuO2 (260 mV and 97.26 mV dec?1) in efficiency as well as instability. Density functional theory (DFT) calculations show that suitable Ni doping at the same time can increase the density of states of the Fermi level, resulting in excellent charge density and low intermediate adsorption energy. These discoveries provide a practical route for designing 2D polymetallic nanosheets to optimize catalytic OER performance.  相似文献   

9.
The slow oxygen evolution reaction (OER) kinetics influences hydrogen production efficiency from water splitting. To break through the bottleneck of water splitting, it is urgent to develop efficient and economic electrocatalysts. Although NiFe-based catalysts exhibit outstanding OER activity, the complicated preparation process limits their large-scale synthesis and applications. Here, partially crystallized nickel-iron oxyhydroxides are synthesized by a facile sol-gel method. When the Fe/Ni mole ratio is 0.5:1, the NiFe0.5(OH)x catalyst shows superior OER performance with a low OER overpotential of 265 mV and good durability. Kinetic studies show that the energy barrier of NiFe0.5(OH)x is only 31.5 kJ mol?1, much smaller than those of Ni(OH)x (41.0 kJ mol?1) and Fe(OH)x (44.8 kJ mol?1). The synergistic action between Ni and Fe sites not only facilitates mass and charge transfer, but also promotes the formation of 1OOH intermediate for the OER.  相似文献   

10.
Oxygen evolution reaction (OER) catalyzed by Ru/Ir-free electrocatalysts is pivotal for preparing oxygen in efficient way, yet our understanding of the relationship between microphysical properties and OER performance is still insufficient. Here we report on 41 kinds of FexCuyNi1-x-y/FeOOH/NiOOH/CuO complexes (FCN-x) to investigate the Cu and Fe induced electronic perturbation and what it brings to OER performance. As result, the activity mapping of FCN-x shows an optimal composition of 1:2:7 (FCN-7) showing a comparable overpotential potential of 170.3 mV, Tafel slop of 75.9 mV dec?1 and durability of 24 h (~29% activity loss) to that of mainstream Ru/Ir-free catalysts. Such enhancement could be attributed to the role of alloying contribution of Fe/Cu, electronic perturbation and surface modification of surface oxides. Additionally, the incompletely oxidized FexCuyNi1-x-y not only provide a platform for electron conduction, but also work as a sacrificial material to forming fresh oxides to maintain the content of surface oxides, which is a key driver of the excellent durability of FCN-7. This synthetic strategy may give an effective way to design and screen Ru/Ir-free OER catalysts.  相似文献   

11.
The main factors limiting water splitting producing hydrogen production are overpotential, activity and persistence of electrocatalysts. Herein, a novel NixCo1-x(OH)2 coupled with NiFe amorphous compound array growing on nickel foam substrate (expressed as NixCo1-x(OH)2/NiFe-AM) was developed by facile hydrothermal and electrodeposition methods. Significantly, NixCo1-x(OH)2/NiFe-AM with this unique structural exhibits superior activity and stability in the two half reactions of water electrolysis. In addition, when tested in an alkaline electrolyte with a current density of 10 mA cm−2, the overpotentials of HER and OER was 157 mV and 196 mV (60 mA cm−2), respectively. The stability can up to 60 h. These test results show through constructing hierarchical nano-thron architecture enhanced electrocatalytic activity to produce hydrogen and oxygen.  相似文献   

12.
The proper construction of high efficiency, low-cost, earth-abundant oxygen evolution reaction (OER) catalyst is essential for hydrogen formation by water splitting. A novel electrocatalyst with highly active OER performance was manufactured by a simple electroless deposition method of Ni-Fe-P-WO3 on nickel foam (NF). Benefiting from outstanding mass transfer capability of Ni-Fe-P-WO3/NF heterogeneous structure, abundance of active sites in the amorphous architecture and etc., the Ni-Fe-P-WO3/NF shows extremely superb electrocatalytic properties compare to noble metal catalyst IrO2/NF for OER, which needs an overpotential of only 218 mV in 1.0 M KOH solution to achieve the current density of 10 mA cm?2. It also has remarkable OER activity at high current density that only needs 298 mV to attain 100 mA cm?2 current density. Moreover, the Ni-Fe-P-WO3/NF has low Tafel slope of 42 mV dec?1. This study offers a novel approach to the production of OER multiphase electrocatalysts from oxides and alloys.  相似文献   

13.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

14.
Owing to the efficient modulation of the electronic structure of nanomaterials, rare earth elements introduction as promoters into nanomaterials has attracted great attention in oxygen evolution reaction (OER). This work demonstrates the cerium carbonate hydroxide (CeCO3OH) in situ grown on nickel foam (NF) supported NiFe layered double hydroxide (LDH) as a novel promoter in OER process. The hybrid material (Ni0.75Fe0.15Ce0.10/NF) possesses excellent performance for OER where the overpotentials at the current densities of 10 mA cm?2 and 100 mA cm?2 are 228 mV and 270 mV, respectively, along with the Tafel slope of 38.3 mV dec?1. Such performance is comparable in activity to many state-of-the-art electrocatalysts. The enhanced performance in the NiFe LDH can be ascribed to the synergetic interaction between CeCO3OH and NiFe LDH by utilizing the advantages of cerium and carbonate in OER. The novelty of our work is the exploration of CeCO3OH as a promoter to enhance the OER performance, which expands the application of cerium-based compounds in energy storage and conversion.  相似文献   

15.
Carboxylate-based metal-organic frameworks (MOFs) have emerged as promising electrocatalyst candidates for the water splitting and metal-air batteries. Hierarchical porous structure and redox-active metal centers with unsaturated coordination sites in MOFs facilitate the enhanced catalytic activity of oxygen evolution reaction (OER). Herein, uniform hollow structured Fe-free bi-metal (Co, Ni) MOF-74 nanoprisms are successfully synthesized using a solvothermal method and (Co1Ni1)3(OH)(CH3COO)5 as the sacrificial templates, where Co and Ni are the metal nodes and 2,5-dihydroxyterephthalic acid (H4DOBDC) serves as the organic ligand. At an overpotential of 300 mV, CoNi MOF-74 shows a high electrocatalytic activity towards OER in 0.1 M KOH, where the current density is 10 mA cm?2 and the Tafel slope is 65.6 mV dec?1. Meanwhile, CoNi MOF-74 is durable that sustains in alkaline for 100 h with 83.25% retention of current density. The improved catalytic activity can be associated with the in-situ generated amorphous Ni–Co (oxy)hydroxide, as well as the electron transfer from Ni2+ to Co2+. This work elucidates the potential application of MOF materials as efficient electrocatalysts for OER.  相似文献   

16.
Developing robust non-noble catalysts towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital for large-scale hydrogen production from electrochemical water splitting. Here, we synthesize Sn- and Fe-containing sulfides and oxyhydroxides anchored on nickel foam (SnFeSxOy/NF) using a solvothermal method, in which a heterostructure is generated between the sulfides and oxyhydroxides. The SnFeSxOy/NF exhibits low overpotentials of 85, 167, 249, and 324 mV at 10, 100, 500 and 1000 mA cm?2 for the HER, respectively, and a low overpotential of only 281 mV at 100 mA cm?2 for the OER. When it serves as both anode and cathode to assemble an electrolyzer, the cell voltage is only 1.69 V at 50 mA cm?2. The sulfides should be the efficient active species for the HER, while the oxyhydroxides are highly active for the OER. The unique sulfide/oxyhydroxide heterostructure facilitates charge transfer and lowers reaction barrier, thus promoting electrocatalytic processes.  相似文献   

17.
The efficiency and stability of electrocatalysts for oxygen evolution reaction (OER) generally depends on the intrinsic catalytic activity and extrinsic active sites. To intrinsically and extrinsically improve OER performance, herein, we present a novel OER catalyst of Fe-doped Co9S8@CoO aerogel with core-shell nanostructures via structural/electronic modulation strategy. The structural modulation is realized by 3D porous aerogel and core-shell nanoarchitecture which provides rich exposed active sites and guarantees effective ion diffusion and O2 release, and the amorphous shell layer of CoO can effectively prevent the corrosion of Co9S8 by the electrolyte during OER process. The electronic modulation is realized by Fe heteroatom doping for Co9S8 and oxygen vacancies in CoO layer was caused by partial oxidation process, which facilities the transfer of electrons during OER process. These merits make Fe-doped Co9S8@CoO an efficient and stable OER catalyst: it requires only a low overpotential of 296 mV to obtain 10 mA cm?2 and it delivers a low Tafel slope of 65 mV dec?1 with good stability, which are even better than those of commercial RuO2. This work presents an effective structural/electronic modulation strategy to develop efficient and stable OER catalysts for water splitting.  相似文献   

18.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   

19.
The present work highlights fabrication of nanostructured nickel-substituted cobalt carbonate hydroxide hydrates (NCCHH) through one-step reflux method. It is noted that optimized 30 mol% nickel-substituted cobalt carbonate hydroxide hydrate (NCCHH-30) nanostructures show quite high specific surface area (~229.55 m2 g?1) owing to the formation of hierarchically hollow interconnected ring-type morphology facilitating the electrode-electrolyte interfacial interaction. As a result, NCCHH-30 showed significant amplification in electrocatalytic oxygen evolution reaction (OER) activity with ultralow overpotential (~141 mV @ 10 mA cm?2), Tafel slope (~49 mV dec?1), and excellent durability (12 h and 2000 cycles) in 1.0 M KOH. Notably, to the best of our knowledge, interconnected NCCHH-30 hierarchical hollow rings exhibited the best overpotential (η100 ~198 mV) value reported for cobalt-based electrocatalysts in alkaline OER. In addition, this material exhibited exceptionally high oxygen evolution performance in comparison to the state-of-the-art commercial RuO2 electrocatalyst in 1.0 M KOH. Such interconnected hierarchically hollow nickel (30 mol%)-substituted cobalt carbonate hydroxide hydrate nanostructured rings could act as an ultraefficient, cost-effective, and stable electrocatalyst for OER in alkaline medium.  相似文献   

20.
The transition metal phosphates are earth-abundant minerals that have been shown to perform well in electrocatalytic water splitting, whereas these catalysts still tend to have excessively high overpotentials and slow kinetics in HER and OER processes. In the present work, hybrid catalysts consisting of Pt quantum dots doped NiP (NiP-Pt) nano-embroidery spheres and Co(OH)2 nanosheets were successfully prepared by two-step electrodeposition method. The excellent catalytic performance of the catalyst relies principally on the synergistic interaction between NiP and Pt quantum dots. Additionally, the NiP-Pt exhibits strong electronic interactions at the interface with Co(OH)2. Consequently, the catalyst has a strong catalytic performance in terms of HER and OER catalytic performance. In terms of HER, an overpotential of only 40 mV is required when the current density reaches 10 mA cm?2, corresponding to a Tafel slope of 49.85 mV·dec?1. At the same time, the catalyst also performs well at OER, with a current density of 10 mA cm?2 at an overpotential of 186 mV and a Tafel slope of 53.049 mV·dec?1 much less than most electrocatalysts. This study involving electrodeposition and doping of quantum dots provides a new idea for the efficient synthesis of fundamental HER and OER bifunctional catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号