首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
One of the effective ways to improve the conductivity and structural stability of binary metal oxide nanostructures is to tightly composite them with nano-carbon materials with excellent conductivity. However, the introduction of low density carbon materials also reduces the energy density of batteries. Therefore, we provides a new idea to enhance the lithium storage performance of carbon/binary transition metal oxide anode materials by multi-element co-doping carbon. ZnMn2O4 provides high lithium storage capacity; non-metallic heteroatoms in milk-derived carbon greatly improve the conductivity of carbon materials; metal heteroatoms in milk-derived carbon increase the density of carbon materials. Multicomponent co-doping carbon can build up the mass specific capacity, ratio performance, cyclic life and mechanical properties of binary metal oxides/porous carbon nanocomposites. As the anode materials of lithium-ion batteries, the ZnMn2O4/MC (milk-derived carbon) hybrids deliver a high reversible capacity of 1352 mAh g−1 after 400 cycles at 0.1 A g−1, and a remarkable long-term cyclability with 635 mAh g−1 after 300 cycles at 1.0 A g−1.  相似文献   

2.
Nitrogen/sulfur co-doped disordered porous biocarbon was facilely synthesized and applied as anode materials for lithium/sodium ion batteries. Benefiting from high nitrogen (3.38 wt%) and sulfur (9.75 wt%) doping, NS1-1 as anode materials showed a high reversible capacity of 1010.4 mA h g−1 at 0.1 A g−1 in lithium ion batteries. In addition, it also exhibited excellent cycling stability, which can maintain at 412 mAh g-1 after 1000 cycles at 5 A g−1. As anode materials of sodium ion batteries, NS1-1 can still reach 745.2 mA h g−1 at 100 mAg-1 after 100 cycles. At a high current density (5 A g-1), the reversible capacity is 272.5 mA h g−1 after 1000 cycles, which exhibits excellent electrochemical performance and cycle stability. The preeminent electrochemical performance can be attributed to three effects: (1) the high level of sulfur and nitrogen; (2) the synergic effect of dual-doping heteroatoms; (3) the large quantity of edge defects and abundant micropores and mesopores, providing extra Li/Na storage regions. This disordered porous biocarbon co-doped with nitrogen/sulfur exhibits unique features, which is very suitable for anode materials of lithium/sodium ion batteries.  相似文献   

3.
A cross-linked MnO2 coated ZnFe2O4 hollow nanosphere composite is synthesized and controlled via a facial and handy route. The connected MnO2 nanoplates form a cross-linked network, which is conducive to the rapid transfer of Li ions. The composite with unique architecture can not only release the strain and stress caused by the insertion and desertion of lithium ions but also greatly improve the electrical conductivity and lithium ion diffusivity. Consequently, when used as a lithium-ion battery anode material, the electrode shows an excellent initial reversible capacity of 933.5 mAh/g with an initial coulombic efficiency of 62.5%. After 100 cycles, the reversible capacity stabilized at 605.6 mAh/g with a high capacity retention of 91% from the 20th cycle to the 100th cycle. At a high current density of 3 A/g, an excellent capacity of 390.6 mAh/g can be retained. In this case, the electrode shows broad application prospects for novel power storage systems.  相似文献   

4.
In this paper, dopamine hydrochloride (DPH) is introduced to synthesize ZIF-8@ZIF-67@DPH in the preparation of ZIF-8@ZIF-67. ZnSe/CoSe/NCDPH (N-doped carbon) composites are calcined in a high-temperature inert atmosphere with ZIF-8@ZIF-67@DPH as the precursor, selenium powder as the selenium source. ZnSe/CoSe/NCDPH has high discharge specific capacity, good cycle stability and outstanding rate performance. The first discharge capacity of ZnSe/CoSe/NCDPH is 1616.6 mAh g−1 at the current density of 0.1 A g−1, and the reversible capacity remains at 1214.2 mAh g−1 after 100 cycles, the reversible capacity is 416.7 mAh g−1 after 1000 cycles at 1 A g−1. Therefore, ZnSe/CoSe/NCDPH composites provide a new step for the research and synthesis of new stable, high-capacity, and safe high-performance lithium ion batteries. The bimetallic selenide composites not only have bimetallic active sites, but also can form synergistic effect between different metal phases, which can effectively reduce the capacity attenuation caused by volume expansion and reactive stress enrichment during lithium storage of metal oxide anode materials. Meanwhile, N-doped carbon can improve the conductivity and provide more active sites to store lithium, thus improving its lithium storage capacity.  相似文献   

5.
《Journal of power sources》2002,112(1):255-260
Sensitivity of anode materials to humidity is an important factor for the performance of lithium ion batteries. Here it is demonstrated for the first time that the sensitivity of composite anode materials of silver and natural graphite can be strikingly lowered. The composites are prepared by depositing silver ions onto the surface of natural graphite. After the following heat-treatment, silver ions turn into metallic silver and carbide AgxC by covering and/or removing active sites that absorb water very easily. Under high humidity condition (about 1000 ppm H2O), the composite materials absorb strikingly less water resulting in still good electrochemical performance. In comparison, natural graphite without this treatment shows fast fade in capacity under high humidity even though it is good in cycling under low humidity (<100 ppm H2O). Silver is a good matrix for lithium storage, and is assumed to contribute to reversible capacity since it enhances with the amount of deposited silver. This method can effectively lower the sensitivity of anode materials to humidity, and is promising in manufacturing lithium ion batteries under less critical conditions.  相似文献   

6.
Nanoporous TiO2/MoOx composite is easily fabricated via one-step mild dealloying of well-designed TiMoAl ternary alloy in alkaline solution. Selectively leaching the Al atom from the precursor alloy resulted in the formation of nanoporous TiO2/MoOx composite accompanied with the natural oxidation of Ti and Mo atoms. The TiO2/MoOx composite is comprised of interconnected nanoscaled network backbone and hollow channels with the ligament size around 40 nm and the pore size around 90 nm. Owing to the rich porosity and the incorporation of MoOx, the as-made nanocomposite exhibits markedly enhanced lithium storage performances with superior reversible capacity, outstanding rate capability, and prominent cycling stabilities compared with the pure TiO2. Especially, the reversible capacity remains about 321.6 and 167.5 mA h g?1 at the rate of 300 and 1000 mA g?1, respectively, after long cycling up to 500 times. Benefitting from the unique performance and facile preparation, the TiO2/MoOx composite holds promising application potential as an anode material in lithium-ion batteries.  相似文献   

7.
MoO2 synthesized through reduction of MoO3 with ethanol vapor at 400 °C was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Its electrochemical performance as an anode material for lithium ion battery was tested by cyclic voltammetry (CV) and capacity measurements. During the reduction process, the starting material (MoO3) collapsed into nanoparticles (∼100 nm), on the nanoparticles remains a carbon layer from ethanol decomposition. Rate capacity and cycling performance of the as-prepared product is very satisfactory. It displays 318 mAh g−1 in the initial charge process with capacity retention of 100% after 20 cycles in the range of 0.01–3.00 V vs. lithium metal at a current density of 5.0 mA cm−2, and around 85% of the retrievable capacity is in the range of 1.00–2.00 V. This suggests the application of this type of MoO2 as anode material in lithium ion batteries.  相似文献   

8.
Novel magnetic tubular carbon nanofibers (MTCFs) are prepared through the combination technique of hypercrosslinking, control extraction, and carbonization. The diameter of MTCFs is mainly concentrated between 90 and 120 nm, and the average tube diameter is about 30 nm. A trace amount of Fe3O4 exists inside the MTCFs with a particle size of 3 nm, which is formed by in situ conversion of the catalyst (FeCl3) for the hypercrosslinking reaction. The MTCFs with high surface area (448.74 m2 g?1) and porous wall are used as anode material for lithium‐ion batteries. The electrochemical properties of MTCFs are compared, and tubular carbon nanofibers (TCFs) prepared by the complete extraction. Electrochemical analysis shows that the introduction of Fe3O4 nanoparticles makes MTCFs have higher reversible capacity and better rate performance. MTCFs exhibit high reversible specific capacity of 1011.7 mAh g?1 after 150 cycles at current density of 100 mA g?1. Even at high current density of 3000 mA g?1, a remarkable reversible capacity of 270.0 mAh g?1 is still delivered. Thus, the novel MTCFs show potential application value in anode material for high‐performance lithium‐ion battery.  相似文献   

9.
The crumpled N-doped reduced graphene oxide wrapped Mn3O4 nanorods (Mn-NrGO) composite are synthesized via a combination of spray pyrolysis and a hydrothermal process for lithium ion batteries. The Mn3O4 nanorods are uniformly dispersed in the conductive matrix of crumpled N-doped reduced graphene oxide, forming a uniform wrapped composite and stopping them from restacking, which synergistically enhanced the Li+ ion conductivity. The well-defined Mn3O4 nanorods, strong interaction between Mn3O4 and NrGO, and highly graphitic properties of Mn-NrGO result in superior reversible capacity, long cycle life, and superior rate performance of approximately 1500 mAh/g at 0.1 C after 100 cycles and >660S mAh/g at 1.0 C after 500 cycles.  相似文献   

10.
The energy-storage capacity of reduced graphene oxide (rGO) is investigated in this study. The rGO used here was prepared by thermal annealing under a nitrogen atmosphere at various temperatures (300, 400, 500 and 600 °C). We measured high-pressure H2 isotherms at 77 K and the electrochemical performance of four rGO samples as anode materials in Li-ion batteries (LIBs). A maximum H2 storage capacity of ∼5.0 wt% and a reversible charge/discharge capacity of 1220 mAh/g at a current density of 30 mA/g were achieved with rGO annealed at 400 °C with a pore size of approximately 6.7 Å. Thus, an optimal pore size exists for hydrogen and lithium storage, which is similar to the optimum interlayer distance (6.5 Å) of graphene oxide for hydrogen storage applications.  相似文献   

11.
Hybrid metal oxide heterostructures have been considered as ideal and potential anode materials for lithium ion batteries (LIBs) due to their better electrochemical performances, such as reversible capacity, structural stability and electronic conductivity. Herein, we have demonstrated synthesis of NiCo2O4/BiVO4 heterostructures by simple hydrothermal strategy to construct hybrid xNiCo2O4/(1–x)BiVO4 heterostructures with four selected compositions, that is, x = 10%, 20%, 30% and 40%. XRD shows the phases of NiCo2O4 and BiVO4 and FE-SEM data revealed strong interface coupling between NiCo2O4 nanowires and BiVO4 dendrites. Upon testing for electrochemical properties, the optimized composition of 30%NiCo2O4-70% BiVO4 showed higher reversible capacity of 408.6 mAh/g at a constant current rate of 0.5 A/g after 1000 cycles with columbic efficiency around 99% suggesting potential electrode material for high-performance LIBs. The higher capacity is mainly attributed to the large surface area which can provide more channels and locations for fast Li ion intercalation/de-intercalation into electrode materials. Additionally, improved Li ion storage capacity with superior rate capability of BN-30 electrode could be attributed to its lower charge-transfer resistance. The dendritic and nanowire heterostructure novel system with good stable capacity for LIBs is hitherto unattempted.  相似文献   

12.
The commercial, alkaline zinc-manganese dioxide (Zn-MnO2) primary battery has been transformed into a secondary battery using lithium hydroxide electrolyte. Galvanostatic discharge–charge experiments showed that the capacity decline of the Zn-MnO2 battery is not caused by the MnO2 cathode, but by the zinc anode. The electrochemical data indicated that a rechargeable battery made of porous zinc anode can have a larger discharge capacity of 220 mAh/g than a planar zinc anode of 130 mAh/g. The cycling performance of these two anodes is demonstrated. Structural and depth profile analyses of the discharged anodes are examined by X-ray diffraction (XRD) and elastic recoil detection analysis (ERDA) techniques.  相似文献   

13.
A novel nanocomposite (0.2TiO2 + AC) with two promising applications is demonstrated, (i) as an additive for promoting hydrogen storage in magnesium hydride, (ii) as an active electrode material for hosting lithium in Li ion batteries (surface area of activated carbon (AC): 491 m2/g, pore volume: 0.252 cc/g, size of TiO2 particles: 20–30 nm). Transmission electron microscopy study provides evidence that well dispersed TiO2 nanoparticles are enclosed by amorphous carbon nets. A thermogravimetry-differential scanning calorimetry (TG-DSC) study proves that the nanocomposite is thermally stable up to ∼400 °C. Volumetric hydrogen storage tests and DSC studies further prove that a 3 wt% of 0.2TiO2+AC nanocomposite as additive not only lowers the dehydrogenation temperature of MgH2 over 100 °C but also maintains the performance consistency. Moreover, as a working electrode for Li ion battery, 0.2TiO2+AC offers a reversible capacity of 400 mAh/g at the charge/discharge rate of 0.1C and consistent stability up to 43 cycles with the capacity retention of 160 mAh/g at 0.4C. Such cost effective-high performance materials with applications in two promising areas of energy storage are highly desired for progressing towards sustainable energy development.  相似文献   

14.
Nitrogen self-doped graphene (N/G) nanosheets were prepared through magnesiothermic reduction of melamine. The obtained N/G features porous structure consisting of multi-layer nanosheets. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and X-ray diffraction (XRD). As anode of lithium ion batteries (LIBs), it exhibits excellent reversible specific capacity of 1753 mAh g−1 at 0.1 A g-1 after 200 cycles. The reversible capacity can maintain at 1322 mAh g−1 after 500 cycles at 2 A g−1. At the same time, all results indicate remarkable cycle stability and rate performance as anode materials. Furthermore, this study demonstrates an economical, clean and facile strategy to synthesize N/G nanosheets from cheap chemicals with excellent electrochemical performance in LIBs.  相似文献   

15.
Two‐dimensional material MXenes owing to their hydrophilic nature, surface termination, and high conductivity can be used in the energy storage device as an anode material. However, poor ion transfer and less available intercalating sites due to self‐stacking of MXene sheets prevent comprehensive utilization of their electrochemical properties. To resolve this problem, a facile method is introduced in this paper to disperse MXene sheets onto reduced graphene oxide sheets to form a porous structure by enhancing electrostatic interactions between two components, which can facilitate ion movement and provide access of ions to more intercalating sites. This hybrid material delivered a capacity of 357 mAh g?1 at 0.05 A g?1 as anode in case of lithium‐ion batteries. Furthermore, the hybrid material showed exceptional stability even after 1000 cycles at 1 A g?1. Current work offers an easy approach for the synthesis of high‐performance niobium carbide‐based hybrid energy storage materials.  相似文献   

16.
Hierarchical architecture of anatase/rutile-mixed phases TiO2 with hollow interior was successfully fabricated via a Topotactic synthetic method, including the synthesis of CaTiO3 precursors and transforming them into TiO2 through ion-exchange process. The as-synthesized TiO2 hierarchical architectures as the anode materials were used as lithium-ion batteries (LIBs). Compared with TiO2 samples, the TiO2@SnO2-5% shows the improved lithium storage capacity, cycling performance and rate properties. The impedance of the TiO2 electrode decreases evidently after adding few amount of SnO2. The hollow hierarchical structure with different compositions provide much more active sites, and well connect interface among anatase, rutile, and SnO2, facilitating the electron and ion transport quickly and efficiently. Addition appropriate number of SnO2 not only well kept the hierarchical architecture but also enhanced the capacity and conductivity of the TiO2 sample. As a result, TiO2@SnO2-5% exhibited excellent lithium storage performance.  相似文献   

17.
The high performance of lithium sulfur (Li S) batteries is the focus of research in recent years. However, the low sulfur loading, shuttling effect in electrolyte, and poor cycling stability limit their applications. Herein, molybdenum carbide nanocrystals embedded carbon nanofibers (Mo2C@CFs: MCCFs) hybrid membrane was prepared in situ on CFs membrane based on carbonthermal reduction of ammonium molybdate. The fibrous MCCFs network is used as the current collector with Li2S6 catholyte solution for Li S batteries, which inhibits the shuttle effect and accelerates kinetics redox reaction. In addition, Mo2C, as electrocatalyst, promotes nucleation of Li2S of the MCCFs substance, which can reduce polarization and increase the specific capacity. As a result, the free-standing MCCFs@Li2S6 electrode (sulfur loading: 4.74 mg) shows a capacity of 977 mAh g−1 and maintains at 828 mAh g−1 at 0.2 C over 250 cycles, and indicates excellent reversibility and cycling stability. Even with sulfur loading as high as 7.11 mg, the MCCF@Li2S6 electrode exhibits an extremely high capacity of 5.75 mAh. Meanwhile, the Mo2C modified CFs can be effectively retarding the self-discharge behavior by trapping the polysulfides. Furthermore, the stability improvement of lithium anode state by effectively suppressing the shuttle effect of polysulfide, played an important role in enhancing the electrochemical performance.  相似文献   

18.
Carbon particles modified macroporous Si/Ni composite (MP-Si/Ni/C) is easily obtained via a facile fabrication of porous Si/Ni precursor by dealloying SiNiAl alloy followed by a surface growth of carbon nanoparticles. MP-Si/Ni/C composite possesses the multiply conductivity modification that are built through mixing Ni dispersoid and growing one layer of carbon particles. Coupled with the structural advantages of interconnected network backbone, rich voids, and the coated carbon particles, MP-Si/Ni/C exhibits dramatically enhanced lithium storage performances with excellent reversible capacity, enhanced rate performance, as well as outstanding cycling stability compared with pure MP-Si and MP-Si/Ni. Especially, the reversible capacity remains up to 1113.1 and 708.8 mA h g−1 at the current densities of 200 and 1000 mA g−1 after 120 cycles, respectively. Besides, it shows excellent rate capability even when continuously cycled at high current density of 3000 mA g−1. With the advantages of unique structure, excellent performances, and facile preparation, the as-made MP-Si/Ni/C composite shows promising application potential as an alternative anode for lithium ion batteries.  相似文献   

19.
The high theoretical capacity of Si makes it a promising anode material for lithium ion batteries. However, the poor electrical conductivity and large volume expansion during lithiation/delithiation hinders its electrochemical performances. Herein, we report a γ irradiation treatment method to prepare P-doped Si nanoparticles. The sample exhibits a capacity of 1698 mAh/g at 0.1 C rate after 100 cycles, which is about 3 times larger than that of undoped Si. The rate performance of γ irradiated P-doped Si is also highly improved when compared to P-doped Si without γ irradiation treatment. The enhanced performance can be attributed that γ irradiation can facilitate the phosphorus doping into Si lattice, which can enhance the electrical conductivity of Si.  相似文献   

20.
Reasonable design and construction of electrode materials with high-performance and low-cost are essential for Li-ion batteries (LIBs) and dual-ion batteries (DIBs). Herein, an eco-friendly and facile strategy is proposed to encapsulate Sb2O3 nanoparticles in one-dimensional (1D) multi-nanochannel-containing carbon nanofibers (Sb2O3@MCNF) using the electrospinning method as well as the subsequent calcination. Such unique construction not only effectively reduces the large volume variation during cycling, but also achieves the fast Li+/e? transportation. As a result, the optimized sample with the precursor triphenylantimony (III) content of 0.35 g (Sb2O3@MCNF-0.35) exhibits superior electrochemical performance as anode materials for LIBs and Li-based DIBs (LDIBs), including high reversible capacity (~333.5 mAh g?1 at 1 A g?1 for LIBs and 233.5 mAh g?1 at 0.2 A g?1 for LDIBs) and favorable cycling stability (over 800 cycles for LIBs and 100 cycles for LDIBs). These results demonstrate that the well-designed Sb2O3@MCNF-0.35 can availably boost the electrochemical performance, which provides vast potential for applications in the field of high-performance energy storage equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号