共查询到20条相似文献,搜索用时 15 毫秒
1.
With the increasing need to reduce greenhouse gas emission and adopt sustainability in combustion systems, injection of renewable gases into the pipeline natural gas is of great interest. Due to high specific energy density and various potential sources, hydrogen is a competitive energy carrier and a promising gaseous fuel to replace natural gas in the future. To test the end use impact of hydrogen injection into the natural gas pipeline infrastructure, the present study has been carried out to evaluate the fuel interchangeability between hydrogen and natural gas in a residential commercial oven burner. Various combustion performance characteristics were evaluated, including flashback limits, ignition performance, flame characteristics, combustion noise, burner temperature and emissions (NO, NO 2, N 2O, CO, UHC, NH 3). Primary air entrainment process was also investigated. Several correlations for predicting air entrainment were compared and evaluated for accuracy based on the measured fuel/air concentration results in the burner. The results indicate that 25% (by volume) hydrogen can be added to natural gas without significant impacts. Above this amount, flashback in the burner tube is the limiting factor. Hydrogen addition has minimal impact on NO X emission while expectedly decreasing CO emissions. As the amount of hydrogen increases in the fuel, the ability of the fuel to entrain primary air decreases. 相似文献
2.
The impact of hydrogen added to natural gas on the performance of commercial domestic water heating devices has been discussed in several recent papers in the literature. Much of the work focuses on performance at specific hydrogen levels (by volume) up to 20–30% as a near term blend target. In the current work, new data on several commercial devices have been obtained to help quantify upper limits based on flashback limits. In addition, results from 39 individual devices are compiled to help generalize observations regarding performance. The emphasis of this work is on emissions performance and especially NOx emissions. It is important to consider the reporting bases of the emissions numbers to avoid any unitended bias. For water heaters, the trends associated with both mass per fuel energy input and concentration-based representation are similar For carbon free fuels, bases such as 12% CO2 should be avoided. In general, the compiled data shows that NOx, NO, UHC, and CO levels decrease with increasing hydrogen percentage. The % decrease in NOx and NO is greater for low NOx devices (meaning certified to NOx <10 ng/J using premixing with excess air) compared to conventional devices (“pancake burners”, partial premixing). Further, low NOx devices appear to be able to accept greater amounts of hydrogen, above 70% hydrogen in some cases, without modification, while conventional water heaters appear limited to 40–50% hydrogen. Reporting emissions on a mass basis per unit fuel energy input is preferred to the typical dry concentration basis as the greater amount of water produced by hydrogen results in a perceived increase in NOx when hydrogen is used. While this effort summarizes emissions performance with added hydrogen, additional work is needed on transient operation, higher levels of hydrogen, system durability/reliability, and heating efficiency. 相似文献
3.
With the inexorable depletion of fossil fuel and the increasing need to reduce greenhouse gas emissions, blending renewable fuels like biogas or renewable hydrogen into natural gas is of great interest. Due to various potential sources and low-carbon or even carbon-free properties, biogas and hydrogen are competitive energy carriers and promising gaseous fuels to replace pipeline natural gas in the future. From the perspective of end users and combustion device manufacturers, one of the major concerns is the influence of the renewable content on the combustion device performance. In addition, the upper limit of renewable gas content percentage in pipeline also interests policy makers and gas utility companies. Therefore, the present study is conducted to investigate the influence of renewable gas content on the operating performance of a residential room furnace. Evaluated combustion performance characteristics include ignition performance, blow-off/flashback limits, burner temperature and emissions (NO, NO 2, N 2O, CO, UHC, NH 3). The results show that 5% carbon dioxide and 15% (by volume) hydrogen can be added to natural gas separately without significant impacts. Above this amount, the risk of blow-off and flashback is the limiting factor. Generally speaking, carbon dioxide addition helps decrease NO X emission but increases CO emission. However, hydrogen addition up to the amounts studied here in has minimal impact on NO X and CO emissions. 相似文献
4.
Displacing pipeline natural gas with renewable hydrogen is a promising way to reduce the emission of carbon dioxide, which is a major greenhouse gas. However, due to significantly differing characteristics of hydrogen and natural gas, such as flame speed, adiabatic flame temperature and stability limits, the combustion performance of hydrogen/natural gas mixture differs from pure natural gas. From the perspective of residential end users, a key question is: how much hydrogen can be injected into the pipeline natural gas without influencing the performance of the residential burners? A representative cooktop burner is selected to study the influence of hydrogen addition on the combustion and cooking performance. Flashback limits, ignition time, flame characteristics, cooking performance, combustion noise, burner temperature, and various emissions (NO, NO 2, N 2O, CO, unburned hydrocarbon (UHC), NH 3) are evaluated for different levels of hydrogen addition. According to the experimental results, the combustion performance of the cooktop burner is not significantly affected with up to about 15% hydrogen addition by volume, which shows the feasibility of utilizing hydrogen on existing cooking appliances without any modification. The experiment methodologies and results in this study will serve as a reference for future test and emission regulation standards on domestic burners. 相似文献
5.
Combustion and emission characteristics of a spray guided direct-injection spark-ignition engine fueled with natural gas-hydrogen blends were investigated. Results show that the brake thermal efficiency increases with the increase of hydrogen fraction and it shows an increasing and then decreasing trend with advancing fuel-injection timing. For later injection timings, the beginning of heat release is advanced with increasing hydrogen fraction, while the beginning of heat release is advanced and then retarded with the increase of hydrogen fraction at earlier injection timings. The flame development duration, rapid combustion duration and total combustion duration decrease with increasing hydrogen fraction. Maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate show an increasing and then decreasing trend with the increase of hydrogen fraction. Brake NOx emission is increased and then decreased, while brake HC, CO and CO 2 emissions decrease with the increase of hydrogen fraction. 相似文献
6.
An evaluation was performed on the efficiency and emissions from an engine fuelled with compressed natural gas (CNG) and a mixture of natural gas and hydrogen, respectively. The mixtures of CNG and hydrogen were named HCNG. 相似文献
7.
Combustion behaviors of a direct injection engine operating on various fractions of natural gas–hydrogen blends were investigated. The results showed that the brake effective thermal efficiency increased with the increase of hydrogen fraction at low and medium engine loads and high thermal efficiency was maintained at the high engine load. The phase of the heat release curve advanced with the increase of hydrogen fraction in the blends. The rapid combustion duration decreased and the heat release rate increased with the increase of hydrogen fraction in the blends. This phenomenon was more obviously at the low engine speed, suggesting that the effect of hydrogen addition on the enhancement of burning velocity plays more important role at relatively low cylinder air motion. The maximum mean gas temperature and the maximum rate of pressure rise increased remarkably when the hydrogen volumetric fraction exceeds 20% as the burning velocity increases exponentially with the increase of hydrogen fraction in fuel blends. Exhaust HC and CO2 concentrations decreased with the increase of the hydrogen fraction in fuel blends. Exhaust NOx concentration increased with the increase of hydrogen fraction at high engine load. The study suggested that the optimum hydrogen volumetric fraction in natural gas–hydrogen blends is around 20% to get the compromise in both engine performance and emissions. 相似文献
8.
Adding renewable hydrogen into natural gas pipeline would bring down the net gas C/H ratio and hence the CO 2 emissions. Also, it can help stabilize electric grids and maximize the renewable output of intermittent energy sources (solar, wind, etc.) via power-to-gas pathway. However, hydrogen differs in its chemical and physical characteristics (flammability range, flame speed, density, adiabatic flame temperature, energy content, etc.) than natural gas. Before transitioning to hydrogen admixing into pipelines, a general agreement on maximum hydrogen tolerance pertaining to end use (residential appliances) operation needs to be established. Focusing on the combustion performance of two representative models of storage water heaters (conventional and low-NO x) in California, this research addresses how much H 2 content in natural gas can be tolerated without loss of critical performance parameters with reliable operation. Characteristics like flashback, ignition delay, flame structure, and emissions (NO x, NO, CO, CO 2, UHC, and NH 3) at different concentrations of H 2 admixed with natural gas is investigated. The present study shows <10% H 2 can be added to natural gas without any loss of efficiency for both the low-NO x and conventional storage water heater. This work also aims to provide a brief review of burner configuration and emission regulation pertaining to water heating owing to a gap in the literature. 相似文献
9.
This work presents an experimental study describing a six-cylinder spark ignition engine running with a lean equivalence ratio, high compression ratio, ignition delay and used in a cogeneration system (heat and electricity production). Three types of fuels; natural gas, pure methane and methane/hydrogen blend (85% CH 4 and 15% H 2 by volume), were used for comparison purposes. Each fuel has been investigated at 1500 rpm and for various engine loads fixed by electrical power output conditions. CO, CO 2, HC, and NOx emissions values, and exhaust gas temperature were measured. The effect of fuel composition on engine characteristics has been studied. The results show, that the hydrogen addition increased HC emissions (around 18%), as well as performance, whilst it reduced NO x (around 31%), exhaust gas temperature, CO and CO 2. 相似文献
10.
An experimental investigation on the influence of different hydrogen fractions and EGR rates on the performance and emissions of a spark-ignition engine was conducted. The results show that large EGR introduction decreases the engine power output. However, hydrogen addition can increase the power output at large EGR operation. Effective thermal efficiency shows an increasing trend at small EGR rate and a decreasing trend with further increase of EGR rate. In the case of small EGR rate, effective thermal efficiency is decreased with the increase of hydrogen fraction; while in the case of large EGR rate, thermal efficiency is increased with increasing of hydrogen fraction. For a specified hydrogen fraction, NO x concentration is decreased with the increase of EGR rate and this effectiveness becomes more obviously at high hydrogen fraction. HC emission is increased with the increase of EGR rate and it decreases with the increase of hydrogen fraction. CO and CO 2 emissions show little variations with EGR rate, but they decrease with the increase of hydrogen fraction. The study shows that natural gas–hydrogen blend combining with EGR can realize high-efficiency and low-emission spark-ignition engine. 相似文献
11.
在缸内直喷火花点火发动机上开展了天然气掺混0%-18%氢气的混合燃料不同点火时刻下的试验研究。结果表明:对于给定的喷射时刻和喷射持续期,点火时刻对发动机性能、燃烧和排放有较大影响,喷射结束时刻与点火时刻的间隔对直喷天然气发动机极为重要,喷射结束时刻与点火时刻的间隔缩短时,混合气分层程度高,燃烧速率快,热效率高。最大放热率等燃烧特征参数随点火时刻的提前而增加。HC排放随点火时刻的提前而下降,CO2和NOx排放随点火时刻的提前而增加,NOx排放的增加在大点火提前角下更明显。掺氢可降低HC排放,对CO和CO2排放影响不大。掺氢量大于10%时可提高天然气发动机热效率。 相似文献
12.
Because blending hydrogen with natural gas can allow the mixture to burn leaner, reducing the emission of nitrogen oxide (NO x), hydrogen blended with natural gas (HCNG) is a viable alternative to pure fossil fuels because of the effective reduction in total pollutant emissions and the increased engine efficiency.In this research, the performance and emission characteristics of an 11-L heavy duty lean burn engine using HCNG were examined, and an optimization strategy for the control of excess air ratio and of spark advance timing was assessed, in consideration of combustion stability. The thermal efficiency increased with the hydrogen addition, allowing stable combustion under leaner operating conditions. The efficiency of NO x reduction is closely related to the excess air ratio of the mixture and to the spark advance timing. With the optimization of excess air ratio and spark advance timing, HCNG can effectively reduce NO x as much as 80%. 相似文献
13.
Hydrogen-fueled internal combustion engines are considered to be more efficient and cleaner alternatives to their fossil-fueled counterparts. Reasonably fast and accurate predictive computational tools are essential for practical design, control and optimization of hydrogen engines. To serve for this broader purpose, a computational model, which has been widely used for gasoline and diesel engines, is investigated for its capability to simulate hydrogen engines. Specifically, fuel-specific sub-models are first incorporated by properly accounting for hydrogen’s distinct properties such as flame speed and burn rate. The accuracy of the model is then assessed by validating it in comparison to independent experimental data. Finally, it is utilized to quantify the environmental impact of exhaust gas recirculation. With these improvements, the present predictive model is shown to capture the measured engine performance and emission data well under different operating conditions. In particular, the variations of peak in-cylinder pressure, heat release rate, brake power, brake thermal efficiency, exhaust temperature, and NO x emissions are predicted close to the measured values. With the addition of a proportional-integral-derivative controller to the engine model, exhaust gas recirculation level is varied, resulting in nearly an order of magnitude reduction in NO x emissions during the present simulations. 相似文献
14.
The urge for cleaner and greener sources of energy is rising day by day. Developed countries are already in process of shifting their energy needs from conventional sources to non-conventional/renewable/green sources of energy. These developed countries are also trying to incorporate developing countries to join the battle against global warming and pollution. Examples, of some non-conventional sources of energy are nuclear energy, wind energy etc. One of such cleaner energy source is hydrogen. The high calorific value, availability in abundance and cleaner nature of hydrogen makes it an appropriate substitute for conventional source of energy. An engine using gaseous hydrogen is in the process of being developed. This may revolutionize the battle against pollution and global warming. Use of hydrogen in a diesel engine working on dual-fuel mode has been the interest of many researchers. However utilization of hydrogen fuel changes the ignition delay, combustion duration, peak mean temperature, peak pressure and other combustion parameters change. In the present work, such research works are examined and analyzed in detail. It is also shown, amount of inducted hydrogen dictates many engine parameters such as engine power, torque etc. a separate section is dedicated to study different emissions from the improvised engine. Lastly, it will be clear from the discussion that introduction of gaseous hydrogen to a diesel engine working on dual fuel mode will have optimistic effect on environment. 相似文献
15.
Hydrogen is gaining prominence as a critical tool for countries to meet decarbonisation targets. The main production pathways are based on natural gas or renewable electricity. LNG represents an increasingly important component of the global natural gas market. This paper examines synergies and linkages between the hydrogen and LNG values chains and quantifies the impact of increased low-carbon hydrogen production on global LNG flows. The analysis is conducted through interviews with LNG industry stakeholders, a review of secondary literature and a scenario-based assessment of the potential development of global low-carbon hydrogen production and LNG trade until 2050 using a novel, integrated natural gas and hydrogen market model. The model-based analysis shows that low-carbon hydrogen production could become a significant user of natural gas and thus stabilise global LNG demand. Furthermore, commercial and operational synergies could assist the LNG industry in developing a value chain around natural gas-based low-carbon hydrogen. 相似文献
16.
Thermophotovoltaic (TPV) power generation in gas-fired furnaces is attracting technical attention. Considerable work has been done in the area of low bandgap GaSb cell-based TPV systems as well as silicon solar cell-based TPV systems. Previous investigations have shown that a radiant burner with a high conversion level of fuel to radiation energy must be developed to realize an efficient TPV system. In our work, we investigated different natural gas-fired radiant burners in order to raise the conversion of fuel energy to thermal radiation. These burners were used as radiation sources to establish and test two TPV prototype systems. It was found that for a non-surface combustion radiant burner, the radiation output can be enhanced using a thermal radiator with a porous structure. Also, we developed a cascaded radiant burner that generates two streams of radiation output. One stream illuminates silicon concentrator solar cells while the other drives low bandgap GaSb cells. In this way, useful radiation output and thus TPV system efficiency are significantly increased due to the cascaded utilization of combustion heat and optimized thermal management. 相似文献
17.
This paper analyzes a novel process for producing hydrogen from natural gas, based on chemical looping (CL) techniques, allowing for intrinsic capture of carbon dioxide. The core of the process consists of a three-reactors CL system, where iron oxide particles are circulated to: (i) oxidize natural gas (thus providing, after cooling and water condensation, a CO2 stream ready for sequestration), (ii) reduce steam, to produce hydrogen as the final product of the process, (iii) consume oxygen from an air stream, to sustain the thermal balance of the system. The process is intrinsically very attractive, because it directly produces hydrogen and CO2 from natural gas, by means of a process simpler than the conventional technologies with CO2 capture capabilities. Hence, a significant potential for investment cost reduction can be anticipated. However, to fully exploit the system potential, an efficient energy recovery from the gaseous streams exiting the reactors must be arranged, taking into account power and steam production needed to support internal consumptions. Therefore, after an introduction clarifying the concept and the scope of the system, as well as its basic chemistry, this paper presents a discussion of two plant configurations, including different integration levels with power production (fired gas turbine (GT) vs. unfired turbocharger) and/or heat recovery steam production methods (also considering steam compression devices). A comparison with “proven technology” plants, based on steam reforming, is also carried out. Due to the lack of reliable estimates of the investment costs for components to be developed from scratch (CL reactors), the analysis is limited to the thermodynamic and technological aspects. Results show, however, that an impressive potential exists for CL systems for hydrogen production, thus deserving substantial R&D activities in the near future. 相似文献
18.
There is no common standard for blended hydrogen use in the natural gas grid; hydrogen content is generally based on delivery systems and end-use applications. The need for a quantitative evaluation of hydrogen-natural gas mixtures related to the mechanical performance of materials is becoming increasingly evident to obtain long lifetime, safe, and reliable pipeline structures. This study attempts to provide experimental data on the effect of H 2 concentration in a methane/hydrogen (CH 4/H 2) gas mixture used in hydrogen transportation. The mechanical performance under various blended hydrogen concentrations was compared for three pipeline steels, API X42, X65, and X70. X65 exhibited the highest risk of hydrogen-assisted crack initiation in the CH 4/H 2 gas mixture in which brittle fractures were observed even at 1% H 2. The X42 and X70 samples exhibited a significant change in their fracture mechanism in a 30% H 2 gas mixture condition; however, their ductility remained unchanged. There was an insignificant difference in the hydrogen embrittlement indices of the three steels under 10 MPa of hydrogen gas. The coexistence of delamination along with the ferrite/pearlite interface, heterogeneous deformation in the radial direction, and abundance of nonmetallic MnS inclusions in the X65 sample may induce a high stress triaxiality at the gauge length at the beginning of the slow strain rate tensile process, thereby facilitating efficient hydrogen diffusion. 相似文献
19.
Blending H 2 with natural gas in spark ignition engines can increase for electric efficiency. In-situ H 2 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and reformed exhaust gas recirculation (RGR) has been identified a potentially advantageous approach: RGR uses the steam and O 2 contained in exhaust gases under lean combustion, for reforming natural gas and producing H 2, CO, and CO 2. In this paper, an alternative approach is introduced: air gas reforming circulation (AGRC). AGRC uses directly the O 2 contained in air, rendering the chemical pathway comparable to partial oxidation. Formulations based on palladium and platinum have been selected as potential catalysts. With AGRC, the concentrations of the constituents of the reformed gas are approximately 25% hydrogen, 10% carbon monoxide, 8% unconverted hydrocarbons and 55% nitrogen. Experimental results are presented for the electric efficiency and exhaust gas (CO and HC) composition of the overall system (SI engine equipped with AGRC). It is demonstrated that the electric efficiency can increase for specific ratios of air to natural gas over the catalyst. Although the electric efficiency gain with AGRC is modest at around 0.2%, AGRC can be cost effective because of its straightforward and inexpensive implementation. Misfiring and knock were both not observed in the tests reported here. Nevertheless, technical means of avoiding knock are described by adjusting the main flow of natural gas and the additional flow of AGRC. 相似文献
20.
Natural gas, which is among the alternative fuels, has become widespread in the transportation as it is both economical and environmentally friendly. While the use of natural gas is at a significant level in spark ignition engines, it has not yet been implemented in compression ignition engines (CI) as it worsens combustion due to ignition delay. In CI engines, however, the combustion properties of natural gas (NG) can be improved by adding hydrogen (H 2) to NG. This is one of the methods applied to use natural gas in CI engines. In this experimental study, two different volumetric rates of NG and NG/H 2 mixtures were added to the combustion air in a CI engine, and engine performance and emissions were examined under different engine loads. The experiments were performed at two different engine speeds, four different engine loads and no-load condition. An engine cylinder pressure of 59.16 bar, which is the closest value to the 59.39 bar obtained in the use of diesel fuel, was obtained at 1500 rpm for “Diesel + NG(500 g/h)” and 59.9 bar (highest values) was obtained for “Diesel + (500 g/h) [80%NG+20%H 2]\" at 1750 rpm. For “Diesel + NG(250 g/h)” (Mix1) and “Diesel + NG(500 g/h)” (Mix2), as the engine speed increases, at the point where the maximum in-cylinder pressure is obtained occurs further to the right from top dead center (TDC). With the addition of 500 g/h NG, an increase of 4.5% was achieved in the cylinder pressure at full load, while an increase of 6.5% was achieved in the case of using “Diesel + (500 g/h) [80%NG+20%H 2]\". Although the effect of the NG and NG/H 2 mixtures on in-cylinder pressure was small, the fuel consumption and thermal efficiency improved. Substantial improvements in hydrocarbon (HC) emissions were observed with the use of “Diesel + (250 g/h)[80%NG+20%H 2]”. Carbon dioxide (CO 2) emissions decreased with speed increase, but no significant differences in terms of CO 2 emissions were observed between the mixtures. There was a maximum difference of 15% between the diesel and the mixtures in CO 2 emissions. Although there was a decrease in nitrogen oxide (NO x) levels with the increase in engine speed, the lowest NO x emissions of 447.6 ppmvol was observed in “Diesel + NG(250 g/h)” (Mix1) at 1750 rpm at maximum load. 相似文献
|