首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   

2.
Electrochemical water splitting for hydrogen production is a promising solution for the production of renewable and environmentally friendly energy sources, but it is hindered by the sluggish kinetic process of oxygen evolution reaction (OER). Here, a novel hierarchical core-shell nanoarray NiCo/Ni/CuO/CF was synthesized by assembling Ni–Co hydroxide nanosheets directly on the metallic nickel coated CuO nanowires, as a highly efficient electrocatalyst for alkaline OER. This NiCo/Ni/CuO/CF anode exhibited low overpotentials of 246 mV and 286 mV at current densities of 10 mA cm−2 and 100 mA cm−2, respectively, and a small Tafel slope of 37.9 mV dec−1. Moreover, NiCo/Ni/CuO/CF showed robust durability at least 60 h at a current density of 100 mA cm−2. Detailed investigations verified that the unique nanosheets/nanowires architecture with high conductivity metallic nickel layer can expand the exposure of active sites and accelerate the transport of electrons.  相似文献   

3.
Transition metal phosphides represent a class of promising electrocatalysts for electrochemical water oxidization and other energy conversion reactions. In this work, we report a novel seal strategy, followed by a second step phosphorization treatment, produces Ni-Fe-P heterostructure directly grown on nickel foam that shows highly catalytic activity for electrochemical water oxidation. The as-prepared catalyst exhibits an excellent electrocatalytic activity, manifested by a current density of 20 mA cm−2 with a very low overpotential (260 mV) for oxygen evolution reaction along with an extremely small Tafel slope of 27 mV decade−1 and a very excellent durability of 120 h in alkaline solution. The excellent performance with exceptional durability owe much to the synergistic effect between the Ni-Fe-P heterostructure and the outer oxidized layer. Remarkably, a current density of 10 mA cm−2 was reached at a low cell voltage of 1.63 V when the original electrode and surface oxidized electrode are used as cathode and anode, respectively.  相似文献   

4.
In this study, cryptomelane-type (1D) MnO2 was doped with boron powder by ball-milling in an inert organic solvent under various experimental conditions. The structural, thermal, morphological, and surface features of samples prepared by the ball-milling method were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and surface measurements. The electrocatalytic oxygen evolution reaction (OER) performances of the samples were tested and compared with the bare cryptomelane to reveal the effect of boron doping into manganese oxide. It was found that boron particles transformed to trigonal BO3 units in the cryptomelane structure via mechanical activation, and accordingly, the oxidation state of manganese in this structure relatively changed. The 0.25% B-doped cryptomelane sample prepared at 12 h grinding time exhibited the overpotential of 425 mV at a current density of 1 mAcm−2 with a Tafel slope of ∼95 mV dec−1. It showed a remarkable catalytic performance among the other electrocatalysts under neutral pH compared to bare cryptomelane. When the elemental boron doping exceeded 1%, the electrochemical performance dramatically decreased depending on the blocking of the Mn3+ active sites.  相似文献   

5.
Developing efficient, non-noble electrocatalysts for hydrogen evolution reaction (HER) is of high significance for future energy supplement, but challenging. NiMo alloy is a non-noble-metal-based efficient catalyst for HER due to its appropriate hydrogen binding energy and excellent alkali corrosion resistance. Herein, for the first time, we report the preparation of radially aligned NiMo alloy microtubes on Ni foam (NiMo MT/NF). The synthesized NiMo alloy catalyst was composed of the Ni10Mo phase; notably, this hierarchically structured material possessed abundant active sites and a high surface area, and exhibited efficient electronic transport properties. The NiMo MT/NF electrode exhibited a low overpotential of 119 mV at 10 mA/cm2 in a base solution, which was 50 mV less than that of NiMo alloy nanoparticles on NF (169 mV).  相似文献   

6.
The development of efficient electrocatalysts for slow reaction of the oxygen evolution reaction (OER) is fundamental for viability of the electrochemical water splitting technologies. Here we report for the first time the synthesis of NiO/carbon hollow fibres (NiO-HF) by the Solution Blow Spinning (SBS) technique, and a study of their catalytic activity towards the OER in alkaline medium. The hollow fibres were obtained with ca. 300 nm in diameter consisting of agglomerated NiO nanoparticles with an average size of 50 nm which is close to the tubular wall thickness. The formation mechanism of the hollow structure was discussed. It was revealed that the carbon from polyenic branch of polyvinylpyrrolidone (PVP) resists the firing treatment and acts as an agglomerating agent, thus ensuring a conductive and percolating path between NiO nanoparticles along the fibres. A battery of electrochemical tests of NiO-HF supported by commercial Ni foam reveals excellent electrochemical activity for OER in 1 M KOH, in comparison with reference NiO nanoparticles (NiO-NP, diameter ca. 23 nm). NiO-HF attains an overpotential of 340 mV vs. RHE at a current density of 10 mA cm−2, which is amongst the lowest values reported in the literature for undoped NiO. Chronopotentiometry reveals stable NiO-HF electrodes over 15 h under an electrolysis current of 25 mA cm−2. Microscopic analysis shows that the fibrillar morphology is completely preserved after the electrolysis test. The remarkable performance of the NiO-HF catalyst is ascribed to the enhanced electronic conductivity resulting from the interpenetrating NiO-HF/carbon microstructure.  相似文献   

7.
Developing effective and robust electrocatalysts that are applicable for intense conditions is promising for variable industrial oxygen evolution reaction (OER). Herein, we have developed a simple hydrothermal strategy to construct a three dimensional nanoflower-like VOx nanosheets (VOx/NiS/NF) that utilizes S-modified NF as substrate. NiS/NF can provide not only high-surface area for the growth of VOx but also better conductivity and stability derived from NiS. XRD shows the formation of amorphous VOx supported on NiS/NF. XPS confirms the existence and valence state of V, Ni and S. EDX and SEM elemental mapping reveal the composition and great distribution of V, O, Ni and S. SEM and TEM show that the thin VOx nanosheets covered on the surface of NiS/NF uniformly, which implying more exposed active sites. OER measurements display that VOx/NiS/NF has the outstanding catalytic activity with the lower overpotential (330 mV, 50 mA cm−2), smaller tafel slope (121 mV dec−1) and lower value of semicircle of EIS than VOx/NF. The modification of NF may be the key for enhancement performances for OER due to reduced charge transfer resistance. The strong durability of VOx/NiS/NF may be attributed to the tighter integration between VOx and NiS/NF in alkaline electrolytes. The impressive results may provide a new strategy to design suitable substrate with good dispersion and conductivity to prepare effective electrocatalysts for OER.  相似文献   

8.
In this work, CoP/NF is synthesized at different temperature (250 °C, 300 °C, 350 °C) (denoted as CoP/NF-T, T = 250, 300, 350). Then, CoP/NF-300 with the best performance towards hydrogen evolution reaction (HER), is used to synthesize compounds with different ratio of reduced graphene oxide (rGO) (CoP/rGO/NF-X, X (quality ratio of rGO/CoP) = 1,3,5). In terms of morphology, under the synergistic effect of rGO, uniform and dense CoP provides the possibility to increase the electrochemical area. While CoP/rGO/NF-3 shows the minimum overpotential of 136 mV to drive 50 mA/cm, and the smallest Tafel slope 135 mV/dec among as-synthesized materials. Furthermore, CoP/rGO/NF-3 has good stability during at least 25 h. These result can be construed as the large electrochemical active area, high conductivity and long-time stability.  相似文献   

9.
The development of high-performance, low cost and earth abundant catalysts for hydrogen evolution reaction (HER) is desired. This work presents amorphous CoFeB supported on nickel foam (NF), prepared by a facial chemical reduction method, as an active catalyst for HER in alkaline solution. Structure characterization indicated that with the incorporation of Fe atom, CoFeB catalysts exhibit similar petal-like granular morphology as CoB. The optimal CoFeB/NF-0.15 catalyst exhibits Brunauer-Emmett-Teller (BET) surface area of 27.4 m2 g?1, nearly two times larger than 13.2 m2 g?1 for CoB, suggesting higher specific surface area. CoFeB/NF-0.15 catalyst shows excellent HER performance and reaches ?10 mA cm?2 at overpotential of 35 mV in alkaline solution, and Tafel slope of 84.7 mV dec?1, indicative of Volmer-Heyrovsky reaction mechanism. The synergistic effect among Fe, Co and B atoms and the more exposed active sites as well as faster electron transfer kinetics collectively contributed to the improved intrinsic activity of CoFeB for HER. Moreover, CoFeB/NF-0.15 exhibits good stability for over 16 h.  相似文献   

10.
The development of non-precious metal catalysts with abundant reserves, low prices and good performance for HER is desired. In this work, rodlike Co doping VS2 arrays on nickel foam (NF) (Co-VS2/NF) were fabricated by a simple one-step solvothermal method. Structure characterization indicated that Co doping reduced the size of rodlike Co-VS2 and meanwhile can modulate its electronic structure, which is beneficial for the enhancement of HER performance. The optimal Co-VS2/NF-2 reveals a low overpotential of 164.5 mV at ?10 mA cm?2, small Tafel slope of 52.2 mV dec?1 and excellent long-term stability after 2000 cycles in 1 M KOH.  相似文献   

11.
The development of economical, durable, and efficient oxygen evolution reaction (OER) electrocatalysts is essential for large-scale industrial water electrolysis. Here, a straightforward strategy is proposed to synthesize a series of nickel selenide nanosheets supported on nickel foam (NiSe2/NF) materials by directly selenizing nickel foam substrates at different temperatures under an inert atmosphere. When evaluated as electrocatalysts in OER, the optimal self-supported NiSe2/NF-350 shows an excellent performance in 1.0 M KOH medium with an overpotential of 458 mV at 100 mA cm?2, a small Tafel slope of 45.8 mV dec?1, and a long-term stability for 36 h. Furthermore, the structural and compositional preservation for NiSe2/NF-350 after stability test was also verified by various characterizations.  相似文献   

12.
A binder-free Ni (oxy)hydroxide on Ni foam was prepared through an in-situ electrochemical activation method. Ni (oxy)hydroxide is active for the oxygen evolution reaction. The Ni (oxy)hydroxide directly formed on the surface of Ni foam as a binder-free catalyst not only exhibited large electrochemically active area, but also displayed low interfacial electronic resistance and low charge transfer resistance. Therefore, the optimized Ni (oxy)hydroxide exhibits an overpotential of 288 and 370 mV at 10 and 500 mA cm−2, respectively, in 1.0 M KOH for the oxygen evolution reaction, as well as favorable during 240 h at 100 mA cm−2.  相似文献   

13.
Trimetallic NiFeCo selenides (NiFeCoSex) anchored on carbon fiber cloth (CFC) as efficient electrocatalyst for oxygen evolution reaction (OER) in alkaline medium have been synthesized via a facile two-step method. Firstly, trimetallic NiFeCo (oxy) hydroxides have been electrodeposited on CFC support (NiFeCo/CFC). Secondly, a solvothermal selenization process has been used to convert NiFeCo/CFC into NiFeCoSex/CFC using N, N-dimethylformamide (DMF) as solvent. The composition and homogeneous distribution of NiFeCoSex/CFC nanoparticles are determined by XRD, XPS, SEM elemental mapping and EDX images. Furthermore, SEM images reveal that NiFeCoSex/CFC has volcano-shaped morphology with rough surface and homogenously distributed on the surface of CFC, which may provide more active sites for OER. The electrochemical measurements show that trimetallic NiFeCoSex/CFC possesses the better electrocatalytic activity with the lower overpotential (150 mV at 10 mA cm?2), Tafel slope (85 mV dec?1), larger double-layer capacitance (200 mF cm?2) and long-term stability than unary or binary metal selenides. The enhanced activity of NiFeCoSex/CFC may be attributed to the trimetallic NiFeCo selenides and selenides-CFC synergistic interaction. It may offer a promising way to design transition multimetallic selenides supported on conductive support as electrocatalysts for OER.  相似文献   

14.
Rational design of electrocatalycally active materials with excellent performance for renewable energy conversion is of great interest. We have developed a nanosheet array of Ni/Co metal-organic framework (MOF) grown on CoO modified Ni foam (CoO/NF) substrate via the solvothermal process. The high surface area and low resistance of Ni/Co-MOF@CoO/NF (NC@CoO/NF) catalyst contribute to efficient water splitting. We have prepared a series of NC-n/CoO/NF (n = 1–4) catalysts to optimize the molar ratio of the Co atom in Ni MOF-74. Among them, NC-2@CoO/NF shows an excellent electrochemical performance in alkaline medium, i.e., low overpotential of 290 and 139 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. For a two-electrode system with NC-2@CoO/NF, a low cell voltage of 1.54 V at 10 mA cm?2 has been obtained for overall water splitting which is much smaller than that with commercial Ir/C– Pt/C pair. This excellent performance can be attributed to the synergistic effects of Ni/Co-MOF and CoO/NF. In addition, the as-prepared NC-2@CoO/NF exhibits excellent long-term stability. The computational simulation also supports experimental results.  相似文献   

15.
Reasonable design and preparation of non-noble metal electrocatalysts with predominant catalytic activity and long-term stability for oxygen evolution reaction (OER) are essential for electrocatalytic water splitting. Ni foam (NF) is highlighted for its 3D porous structure, impressive conductivity and large specific surface area. Herein, nano/micro structured dendritic cobalt activated nickel sulfide grown on 3D porous NF (Co–Ni3S2/NF) has been successfully synthesized by one-step hydrothermal method. Due to the ingenious incorporation of Co, Co–Ni3S2/NF electrode shows auspicious electrocatalytic performance for OER compared with Ni3S2/NF electrode. As a result, Co–Ni3S2/NF needs overpotential of only 274 and 459 mV at current density of 10 and 50 mA cm−2, respectively, while Ni3S2/NF requires overpotential of 344 and 511 mV. At potential of 2.0 V (vs. RHE), Co–Ni3S2/NF displays current density of 191 mA cm−2, while Ni3S2/NF just attains current density of only 135 mA cm−2. Moreover, Co–Ni3S2/NF demonstrates excellent stability for uninterrupted OER in alkaline electrolyte. The strategy of designing and preparing cobalt activated nickel sulfide grown on NF renders a magnificent prospect for the development of metal-sulfide-based oxygen evolution catalysts with excellent electrocatalytic performances.  相似文献   

16.
We report a unique composite of La0.4Sr0.4Ti0.9Ni0.1O3-δ (LSTN) nanoparticles interlaced with two dimensional Ti3C2Tx (MXene) nanosheets, providing high conductivity. LSTN heterostructure synthesized by the sol-gel method produces a large oxygen vacancy and creates a variable valence state while, MXene synthesized from Hydrofluoric acid (HF) treatment resulted in a highly hydrophilic and conductive surface, thereby enhancing the charge transferability. For OER, the LSTN/MXene 66.67% electrode exhibits a benchmark of 10 mA cm?2 at a potential of 1.56 (V vs RHE) in 1 M KOH. It has exhibited the lowest Tafel slope of 44 mV dec?1 and highest mass activity (60 mA g?1 @ 1.59 V) due to quicker ions diffusion and increased available exposed area. Moreover, the efficient LSTN/MXene 66.67% electrode showed good long-term durability during a 24 h stability test at a current density of 100 mA cm?2. The strong interfacial interaction and high charge transfer among LSTN nanoparticles and 2D MXene nanosheets not only provide good structural strength to the composite but also improves the redox activity of LSTN/MXene 66.67% catalyst towards OER. This work provides improved conductive properties of perovskite by developing a composite of perovskite and MXene, that has significantly enhanced electrochemical properties of the catalyst by undergoing fast kinetics.  相似文献   

17.
To meet the increasing demand for clean energy storage in modern society, the development of efficient and low-cost electrocatalysts that can overcome and accelerate the sluggish kinetics of electrochemical reactions is required. NiFe-Layered Double Hydroxide (NiFe-LDH) is regarded as an effective oxygen evolution reaction (OER) electrocatalyst, but most of the current synthesis methods, such as electrochemical deposition and calcination, are complex and difficult to operate on a large scale. Herein, we report the preparation of NiFe-LDH directly on a NiFe foam substrate using a simple two-step method in which the surface oxide layer is first removed from NiFe foam using a room-temperature hydrochloric acid bath for 10 min, followed by soaking in hydrochloric acid solution at 80 °C for 20 h. The prepared NiFe foam etched by hydrochloric acid for 20 h (NiFe-20-H) exhibited a unique hydrangea flower-like structure with a large surface area and abundant active sites, which is favorable for OER. Combining the structural advantages of large number of exposed active sites, synergistic effects of nickel and iron, and the convenient charge transfer path provided by the NiFe foam, the resulting NiFe-20-H sample achieved a current density of 10 mA cm−2 at an extremely low overpotential (241 mV) and a small Tafel slope of 44.2 mV dec−1, providing excellent long-term stability in alkaline electrolyte, surpassing pristine NiFe foam reported in our work, as well as many state-of-the-art electrocatalysts and IrO2. This efficient synthesis of NiFe-LDH provides a new approach for the development of non-noble OER electrocatalysts and has wide application prospects in the field of electrocatalysts.  相似文献   

18.
Many transition metal di-selenides such as MoSe2 and WSe2 show good catalytic activity on their edges with limited active orientations. These metal di-selenides are actively being used as target material for increasing the number of electrocatalytic active sites and in turn to improve the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities by increasing the ratio of edges to the basal plane. In present work, we have studied the activity of pristine and alkali atoms (Na, K and Ca) doped-SnSe2 for HER and OER catalyst. The state-of-art density functional theory (DFT) based computations are performed for estimating the catalytic activity of the pristine and doped SnSe2 by means of evaluating the adsorption and Gibbs free energies subjected to hydrogen and oxygen adsorption. Further, to get better prediction of adsorption energy on the individual catalytic surface, we have included the dispersion correction term to exchange-correlation functional. Results show that the pristine SnSe2 is not a good HER catalyst when hydrogen is adsorbed on its basal plane. However, edge-sites show the good hydrogen adsorption and indicates that the edges of SnSe2 are the most preferential site for hydrogen adsorption. As far as the catalytic activity of SnSe2 with dopants is concerned, the Na-doped SnSe2 among all shows the best catalytic activity over its edge-site; whereas K and Ca doped SnSe2 show basal plane as preferred catalytic site. It is interesting to note that the disadvantage of low catalytic activity on basal plane of SnSe2 can be improved by selective doping of alkali metals.  相似文献   

19.
It is of great significance to develop highly efficient and robust oxygen evolution reaction (OER) electrocatalysts derived from earth-abundant and inexpensive elements for future hydrogen economy via electrochemical water splitting. Herein, Cu-based metal-organic framework (MOF) is directly supported on conductive Cu foam (CF) by a simply chemical oxidation of Cu substrate to grow Cu(OH)2 nanowire arrays, followed by solvothermal treatment to obtain in situ grown Cu-based MOF electrode (MOF [Cu(OH)2]/CF). The as-prepared 3D electrode shows superior OER activity with a low potential of 330 mV to deliver a current density of 10 mA cm−2, a Tafel slope of 108 mV dec−1, and excellent durability in alkaline media (1.0 M KOH). After electrolysis, XRD confirms that the initial MOFs have been transformed into CuO species, which are essentially active components for OER performance. This demonstrates that the MOFs can serve as efficient precursors for formation of highly active Cu oxide catalysts towards OER. This work provides a new strategy to develop MOFs-derived electrocatalysts for future clean energy conversion and storage systems.  相似文献   

20.
Designing appropriate oxygen evolution reaction (OER) electrocatalysts to meet the requirements of high efficiency, long-term durability, and low cost remains the challenge for scientific community. Cobalt oxide (Co3O4) has been proven as a promising candidate for OER with attractive activity and stability in alkaline media. In this study, flower-like Co3O4 microstrips have been successfully prepared and directly embedded in Co foam (denoted as Co3O4@Co foam) by a green and facile two-step strategy including hydrothermal treatment and subsequent annealing process under relatively low temperatures. It demonstrates that the OER performance of the Co3O4@Co foam electrode can rival to the commercial RuO2 on glassy carbon electrode. The Co3O4@Co foam electrode displays high OER activity with a low overpotential of 273 mV at a current density of 10 mA cm−2, and a low Tafel slope of 61.8 mV dec−1. The flower-like Co3O4 microstrips greatly increase the active surface area to expose more active sites, and the directly growth of Co3O4 microstrips on Co foam with intimate contact improves the electron transport and ensures the stability of the Co3O4@Co foam electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号