首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the study, metal-free boron and oxygen incorporated graphitic carbon nitride (B and O doped g-C3N4) with carbon vacancy was successfully prepared and applied as a catalyst to the dehydrogenation of sodium borohydride (NaBH4) in methanol for the first time. The hydrogen generation rate (HGR) value was found to be 11,600 mL min?1g?1 by NaBH4 of 2.5%. This is 2.53 times higher than the g-C3N4 catalyst without the addition of B and O. The obtained activation energy was 25.46 kJ mol?1. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), energy dispersive X-Ray analyser (EDX), Transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR) analyses for characterization were performed. A possible mechanism of H2 production from the reaction using metal-free B and O doped g-C3N4 catalyst with carbon vacancy has been proposed. This study showed that g-C3N4 and its composites with doping atoms can be used effectively in H2 production by NaBH4 methanolysis.  相似文献   

2.
Metal-free catalysts (SP–KOH–P) doped phosphorus and oxygen as a result of modification with H3PO4 to the surface of the activated carbon sample (SP–KOH) obtained by activation of KOH with Spirulina microalgae were used to obtain hydrogen (H2) from methanolysis of NaBH4. The characteristic structure of SP-KOH-P and SP-KOH metal-free catalysts were examined by XRD, TEM, elemental analysis, FTIR, and ICP-MS. The effects of the amount of catalyst, NaBH4 concentration, reusability, and temperature on H2 production rate from NaBH4 methanolysis reaction were investigated. The hydrogen production rate (HGR) obtained with 25 mg SP-KOH-P was found to be 19,500 mL min?1 g?1. The activation energy (Ea) value of SP-KOH-P metal-free catalyst sample was calculated as 38.79 kJ mol?1.  相似文献   

3.
The chemisorption of the labile dimeric platinum nitratocomplex [Pt2(μ-OH)2(NO3)8]2- onto graphene oxide doped graphitic C3N4 (g–C3N4–GO) was performed for the first time to prepare PtOx/g–C3N4–GO composites with ionic platinum species (Pt(II)) bonded with N-donor groups of the g-C3N4. The thermal treatment of the obtained composites in the hydrogen atmosphere results in a gradual reduction of Pt(II) species with the formation of Pt/g–C3N4–GO photocatalysts. The Pt/g–C3N4–GO catalysts paired with TEOA sacrificing agent in an aqueous solution were tested in a photoinduced hydrogen evolution reaction under visible light (λ = 425 nm). The photocatalytic activity of prepared materials strongly influenced by the temperature of the reduction stage so that the maximal rate of H2 evolution was revealed for the catalyst (0.5 wt% of Pt) reduced at 400 °C with a quantum efficiency of 3.0% and rate of HER of 5.1 mmol h?1 per 1 g of photocatalysts. The photocatalytic activity of this sample was much higher than the activity of 0.5% Pt/g–C3N4–GO photocatalysts prepared by conventional photoreduction of H2PtCl6 or reduction of this precursor with NaBH4. The Pt/g–C3N4–GO photocatalyst with Pt concentration of 0.1 wt% was prepared using the described protocol and shown specific activity of about 1.4 mol h?1 per 1 g of Pt outperforming analogous material reported to date.  相似文献   

4.
In this paper, we designed a composite photocatalytic system in which cobalt nanoparticles (Co NPs) are attached to nitrogen-doped carbon (N-d-C) and co-bonded to the surface of the noted photocatalyst graphite carbon nitride (g-C3N4), showing an excellent photocatalytic hydrogen production. The bulk g-C3N4 was formed in the first thermal treatment in air using melamine as a precursor. Subsequently, the secondary calcination under N2 led to the synchronous fabrication of N-d-C/Co NPs and their combination with g-C3N4 to form a novel ternary photocatalyst (g-C3N4/N-d-C/Co NPs). Co NPs exposed on the surface of the nanomaterials endowed much more reaction sites than g-C3N4 for photocatalytic hydrogen production. Meanwhile, the embedded N-d-C provided an additional transfer approach for photocarriers. The as-prepared composite nanomaterials own a relatively high specific surface area of 97.45 m2 g?1 with an average pore size of 3.83 nm. As a result, compared with pristine g-C3N4 (~25.35 μmol g?1 h?1), the photocatalytic performance was increased by over 10 times (~270.05 μmol g?1 h?1). Our work gives a novel approach for highly active g–C3N4–based photocatalysts in the field of photocatalysis.  相似文献   

5.
Graphite carbon nitride (g-C3N4) has caught far-ranging concern for its masses of advantages, for instance, the unique graphite-like two-dimensional lamellar structure, low cost, nontoxic, suitable bandgap of 2.7 eV and favorable stability. Whereas owing to the shortcomings of low solar absorptivity and fast recombination of photo-induced charge pairs, the overall quantum efficiency of photocatalysis for g-C3N4 is suboptimal, resulting in limited practicality of g-C3N4 (GCN). In our study, modified g-C3N4 materials (HCN) with ample carbon vacancies (CVs) were obtained through calcinating of g-C3N4 in H2 atmosphere. Higher specific surface area and more active sites of HCN were induced by roasting of g-C3N4 in H2. CVs that occurred in the N-(C3) bond lead to the reduction of electron density around N, thus narrowing the bandgap of HCN-3h and enlarging corresponding light response capability. Under the synergistic function of abundant pore construction and CVs on HCN, the photo-excited e?/h+ pairs can be memorably separated and transferred, which is favorable to photocatalytic efficiency. Among HCN, the HCN-3h sample has the highest H2 generation rate of 4297.9 μmol h?1 g?1, which achieves 2.3-fold higher than that of GCN (1291.7 μmol h?1 g?1). This paper brings forward a meaningful method of boosting the photocatalytic performance of photocatalysts by constructing abundant CVs.  相似文献   

6.
Graphitic carbon nitride (g-C3N4) with semiconducting nature can be considered for energy storage system by modifying its electrical conductivity and structural properties through formation of hybrid with materials such as bimetallic metal sulfide and nickel-cobalt layered double hydroxide (LDH). g-C3N4 as a N-rich compound with basic surface sites can change the surface properties of nanohybrid and impress the charge transfer. In this study, a nanohybrid based on nickel-cobalt LDH and sulfide and graphitic carbon nitride (NiCo LDH/NiCo2S4/g-C3N4) was synthesized through a three-step method. At first, Ni doped ZIF-67 was formed at the surface of g-C3N4 nanosheets and then the product was calcined in a furnace to form NiCo2O4/g-C3N4. At next step, the sample was hydrothermally converted to NiCo2S4/g-C3N4 using thioacetamide and finally modified with NiCo LDH nanoplates to form porous structure with high surface area. The NiCo LDH/NiCo2S4/g-C3N4 nanohybrid showed high specific capacitance of 1610 F g?1 at current density of 1 A g?1 and also excellent stability of 108.8% after 5000 cycles at potential scan rate of 50 mV s?1, which makes it promising candidate for energy storage. An asymmetric system was prepared using nickel foams modified with NiCo LDH/NiCo2S4/g-C3N4 and g-C3N4 as positive and negative electrodes, respectively. The specific capacitance of 246.0 F g?1 was obtained at 1 A g?1 in 6 M KOH solution and system maintained 90.8% cyclic stability after 5000 cycles at potential scan rate of 50 mV s?1. The maximum energy density and power density of the system were calculated as 82.0 Wh kg?1 and 12,000 W kg?1, respectively, which demonstrate its capability for energy storage.  相似文献   

7.
Despite that several strategies have been demonstrated to be effective for improving the catalytic hydrogen evolution activity of bulky g-C3N4, the large-scale hydrogen production over g–C3N4–based photocatalysts still confronts a big challenge. Here, a two-step calcination method is presented in constructing metal oxide/two-dimensional g-C3N4, i.e., Ta2O5/2D g-C3N4 photocatalyst. Thanks to the superiority of the synthetic method, nanostructure engineering forming 2D structure, and surface assembly with another semiconductor, can be realized simultaneously, in which ultrathin structure of 2D g-C3N4 and strong interfacial coupling between two components are two important characteristics. As a result, the structure engineered Ta2O5/2D g-C3N4 induces high photocatalytic hydrogen evolution half reaction rate of ~19,000 μmol g?1 h?1 under visible light irradiation (λ > 400 nm), and an external quantum efficiency (EQE) of 25.18% and 12.48% at 405 nm and 420 nm. The high photocatalytic performance strongly demonstrates the advance of the synchronous engineering of nanostructure and construction of heterostructure with tight interface, both of which are beneficial for the fast charge separation and transfer.  相似文献   

8.
Here, the carbon nanodots were successfully synthesized from pomegranate peels (PPCD). This obtained PPCD was treated by a hydrothermal process with phosphoric acid for P doping (P doped PPCD) and used as a metal-free catalyst to obtain hydrogen(H2) from sodium borohydride (NaBH4) methanolysis for the first time. The characteristics of the samples obtained by ultraviolet, fluorescence, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Inductively coupled plasma mass spectrometry (ICP-MS) analyses were examined. NaBH4 concentration effect, temperature effect and catalyst reusability experiments were carried out. Using 10 mg of the catalyst with 2.5% NaBH4, an HGR value of 13000 mL min?1g?1 was obtained. The activation energy (Ea) for the P-doped PPCD catalyst was 30.96 kJ mol?1.  相似文献   

9.
Photocatalytic technology for hydrogen evolution from water splitting and pollutant degradation is one of the most sustainable methods. Here, the graphene/g–C3N4–Co composite materials have been prepared by one-pot calcination method. The results show that g-C3N4 grow on the surface of graphene and form a sandwich structure, meanwhile, the introduction of Co increases the active sites, which promotes the photocatalytic performance. The influences of graphene and Co content on photocatalytic activity were also studied by UV–visible spectrophotometry (DRS), photoluminescence spectroscopy (PL), photocurrent, degradation MB, and hydrogen production. The apparent reaction rate constant k of graphene/g–C3N4–Co (3%) is 0.946 h−1, which is 4.90 and 2.18 times faster than g-C3N4 and graphene/g-C3N4, respectively. And the hydrogen production rate of graphene/g–C3N4–Co (3%) (892.3 μmol h−1 g−1) is 3.53 and 1.61 times higher than g-C3N4 and graphene/g-C3N4, respectively.  相似文献   

10.
In this paper, a novel 2D bubble-like g-C3N4 (B–CN) with a highly porous and crosslinked structure is successfully synthesized via a cost-effective bottom-up process. The as-prepared B–CN photocatalyst delivers a considerably expanded specific surface area and increased active sites. Moreover, the 2D bubble-like structure can afford shortened diffusion paths for both photogenerated charge carriers and reactants. As a result, the photocatalytic H2 evolution rate of B–CN reached 268.9 μmol g?1 h?1, over 5 times more than that of bulk C3N4. The Ni ions were further deposited on B–CN as a cocatalyst to enhance the photocatalytic activity. Benefit from the synergy of 2D bubble-like structure and Ni species cocatalyst, recombination of photoinduced charges was greatly inhibited and the hydrogen evolution reaction (HER) was significantly accelerated. The resulted catalyst achieved a dramatically high H2 evolution rate of 1291 μmol g?1 h?1. This work provides an alternative way to synthesize novel porous carbon nitride together with non-noble metal cocatalysts toward enhanced photocatalytic activity for H2 production.  相似文献   

11.
Fabricating 0D/2D heterojunctions is considered to be an efficient mean to improve the photocatalytic activity of g-C3N4, whereas their applications are usually restricted by complex preparation process. Here, the 0D/2D SnO2/g-C3N4 heterojunction photocatalyst is prepared by a simple one-step polymerization strategy, in which SnO2 nanodots in-situ grow on the surface of g-C3N4 nanosheets. It shows the outstanding photocatalytic H2 production activity relative to g-C3N4 under the visible light, which is due to the formation of 0D/2D heterojunction significantly contributing to the separation of photogenerated charge carriers. In particular, the H2 production rate over the optimal SnO2/g–C3N4–1 sample is 1389.2 μmol h−1 g−1, which is 6.06 times higher than that of g-C3N4 (230.8 μmol h−1 g−1). Meanwhile, the AQE value of H2 production over the SnO2/g–C3N4–1 sample reaches up to a maximum of 4.5% at 420 nm. This work develops a simple approach to design and fabricate g–C3N4–based 0D/2D heterojunctions for the high-efficiency H2 production from water splitting.  相似文献   

12.
In this work, a series of carbon dots (CDs) modified hollow g-C3N4 spheres (HCNS-Cx) were constructed via a double in situ approach using cyanamide and glucose as precursors, respectively. As HCNS-Cx was synthesized by one-step in situ thermal polymerization of two precursors, which could make CDs and g-C3N4 keep tight connection and increase the separation of the photogenerated electron-hole pairs. The average diameter and wall thickness of the HCNS-Cx are about 355 nm and 55 nm, respectively. Under the visible light irradiation, the H2 evolution rate (HER) of HCNS-C1.0 (2322 μmol g?1 h?1) was 19 times that of bulk g-C3N4 (122 μmol g?1 h?1) and 1.8 times that of HCNS without CDs modification (1289 μmol g?1 h?1), respectively. And its apparent quantum efficiency is 17.93% at 420 nm. The specific surface area, light absorption capacity, and charge carrier mobility of HCNS-Cx could be dramatically improved due to the introduction of CDs and hollow structures of g-C3N4 spheres, resulting in a significant improvement of photocatalytic activity.  相似文献   

13.
This paper presents hydrogen generation measurements from the hydrolysis of NaBH4 aqueous solutions catalyzed by Co doping on single, bimetallic and trimetallic oxide supports (Co/CuO, Co/NiO, Co/Al2O3, Co/NiO–Al2O3, Co/CuO–Al2O3, and Co/CuO–NiO–Al2O3). Support materials are synthesized by the co-precipitation method. Then, Co is doped into support materials by the impregnation method. It is found that Co/CuO–NiO–Al2O3 catalyst exhibited high reaction activity with a maximum hydrogen generation rate (HGR) of 2067.2 ml min?1 gcat?1 at 25 °C. The effect of temperature of the solution, Co amount, and recyclability of the catalyst on hydrogen generation with Co/CuO–NiO–Al2O3 catalyst is investigated in detail. In addition, the highest HGR for Co/CuO–NiO–Al2O3 catalyst is obtained at 55 °C as 6460.0 ml min?1 gcat?1. The activation energy is calculated to be 31.59 kJ mol?1 using Co/CuO–NiO–Al2O3 catalyst. Co/CuO–NiO–Al2O3 catalyst exhibits zero-order reaction kinetics concerning NaBH4 concentration. In addition, the Co/CuO–NiO–Al2O3 catalyst provided high reusability after 5 cycles.  相似文献   

14.
Developing high-efficiency and low-cost catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) is significant and critical for the exploitation and utilization of hydrogen energy. Herein, the in-situ fabrication of well-dispersed and small bimetallic RuNi alloy nanoparticles (NPs) with tuned compositions and concomitant hydrolysis of AB are successfully achieved by using graphitic carbon nitride (g-C3N4) as a NP support without additional stabilizing ligands. The optimized Ru1Ni7.5/g-C3N4 catalyst exhibits an excellent catalytic activity with a high turnover frequency of 901 min?1 and an activation energy of 28.46 kJ mol?1 without any base additives, overtaking the activities of many previously reported catalysts for AB hydrolysis. The kinetic studies indicate that the AB hydrolysis over Ru1Ni7.5/g-C3N4 is first-order and zero-order reactions with respect to the catalyst and AB concentrations, respectively. Ru1Ni7.5/g-C3N4 has a good recyclability with 46% of the initial catalytic activity retained even after five runs. The high performance of Ru1Ni7.5/g-C3N4 should be assigned to the small-sized alloy NPs with abundant accessible active sites and the synergistic effect between the composition-tuned Ru–Ni bimetals. This work highlights a potentially powerful and simple strategy for preparing highly active bimetallic alloy catalysts for AB hydrolysis to generate hydrogen.  相似文献   

15.
Photocatalysts with abundant active sites are essential for photocatalytic H2 evolution from water. Herein, Ni0.85Se-deposited g-C3N4 was obtained by a physical solvent evaporation method. The investigation shows that Ni0.85Se with unsaturated active Se atoms can significantly improve the photocatalytic activity of g-C3N4, and the H2 production rate of Ni0.85Se/g-C3N4 can reach 8780.3 μmol g?1 h?1, which is 3.5 and 92.9 times higher than that of Ni0.85+xSe/g-C3N4 (2497.9 μmol g?1 h?1) and pure g-C3N4 (94.5 μmol g?1 h?1), respectively. This improvement can be attributed to the quick charge transfer between Ni0.85Se and g-C3N4 with S-scheme heterojunction feature based on a series of trapping experiments and photoelectrochemical analysis. Moreover, abundant unsaturated Se atoms could provide more H2 evolution active sites. This work sheds light on the construction of heterojunctions with abundant active sites for H2 production.  相似文献   

16.
Facilitating the separation of photoexcited electron-hole pairs and enhancing the migration of photogenerated carriers are essential in photocatalytic reaction. CoS/g-C3N4/NiS ternary photocatalyst was prepared by hydrothermal and physical stirring methods. The optimized ternary composite achieved a hydrogen yield of 1.93 mmol g?1 h?1, 12.8 times that of bare g-C3N4, with an AQE of 16.4% at 420 nm. The enhanced photocatalytic activity of CoS/g-C3N4/NiS was mainly ascribed to the synergistic interaction between the Z-scheme heterojunction constructed by CoS and g-C3N4 and the NiS co-catalyst featuring a large amount of hydrogen precipitation sites, which realized the efficient separation and migration of photogenerated carriers. In addition, the CoS/g-C3N4/NiS heterojunction-co-catalyst system exhibited excellent photocatalytic stability and recyclability.  相似文献   

17.
Hydrolytic dehydrogenation of ammonia borane (AB) driven by efficient catalysts has attracted considerable attention and is regarded as a promising strategy for hydrogen generation. Herein, RuP2 quantum dots supported on graphitic carbon nitride (g-C3N4) were successfully prepared by in-situ phosphorization, yielding a highly efficient photocatalyst toward AB hydrolysis. The catalysts were characterized by field-emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction, x-ray photoelectron microscopy, inductively coupled plasma atomic emission spectroscopy, UV–visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. A conventional water-displacement method was employed to record the hydrogen volume as a function of reaction time. Owing to visible-light irradiation, the initial turnover frequency of the AB hydrolysis was significantly enhanced by 110% (i.e., 134 min?1) at room temperature. Furthermore, the apparent activation energy decreased from 67.7 ± 0.9 to 47.6 ± 1.0 kJ mol?1. The photocatalytic hydrolysis mechanism and catalyst reusability were also investigated.  相似文献   

18.
In photocatalytic field, it is a significant challenge to synthesize cocatalyst with high performance, noble-metal free and facile methods to recycle. Herein, carbon layer coated Fe3C (Fe3C@C) nanoparticles were prepared by one-step method and for the first time utilized as highly efficient cocatalysts for improving visible-light-driven hydrogen evolution activity of g-C3N4. The photocatalytic hydrogen evolution rate of optimal Fe3C@C/g-C3N4 was about 27.2 times of bare g-C3N4 samples. Furthermore, the Fe3C@C/g-C3N4 composite catalyst showed excellent stability and reusability. The apparent quantum yield (AQY) of the optimized FeC@C/g- C3N4 reaches 0.501% and 0.124% at 400 nm and 420 nm, respectively. The AQY of the FeC@C/g- C3N4 is 26.2 times higher than that of g-C3N4 at 400 nm Fe3C@C has an extraordinary cocatalytic effect for g-C3N4 photocatalytic hydrogen evolution mainly due to three aspects: Firstly, the Fe3C acts as a trap to lure electrons because of its lower Fermi energy level and higher conductivity, which can increase the hydrogen production activity by trapping the photogenerated electrons produced by g-C3N4; Secondly, the coated carbon layer can provide chemical protection for Fe3C nanoparticles and promote the transfer of photogenic electrons, thus further improving the efficiency and stability of photocatalytic hydrogen production; Thirdly, the strong magnetic property of Fe3C@C nanoparticles gives Fe3C@C/g-C3N4 photocatalysts the advantages of low cost and high recovery efficiency. It is believed that this work provides a new strategy and possibility for the application of photocatalytic hydrogen production.  相似文献   

19.
Exfoliated and plicated g-C3N4 nanosheets (CNsF) were prepared through a thermal-chemical exfoliation in which the bulk g-C3N4 was obtained first under thermal exfoliation, and then was exposed to an acidic etching using hydrofluoric acid under hydrothermal condition. The acidic etching not only exfoliated g-C3N4 nanosheets by disrupting weak van der Waals forces between layers, which led to formation of a monolayer or a few layers of g-C3N4 nanosheets, but also made disordered defects on its surface and created plicated g-C3N4 nanosheets. Under visible-light illumination, the optimized sample (CNsF-6%) showed a hydrogen evolution rate of 54.13 μmol h?1g?1 (without co-catalyst) and a specific surface area of 121.4 m2 g?1, which were about 4.7 and 2.5 times, respectively, higher than pristine g-C3N4. It also showed remarkably enhanced photocatalytic performance in removing various organic pollutants. This remarkable improvement probably arises from the porous nanosheets and an increased number of active sites resulting from the CNsF, which subsequently enhanced the charge separation efficiency. This work provided an alternative way to obtain highly active g-C3N4 photocatalysts.  相似文献   

20.
The two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets based composites are prepared in the form of the NiS/g-C3N4, CdS/g-C3N4 and CdS/NiS/g-C3N4 using a facile and reliable method of chemical deposition. The TEM and HRTEM images demonstrated a spectacular representation of the 2D lamellar microstructure of the g-C3N4 with adequately attached CdS and NiS nanoparticles. The changes in crystallinity and the surface elemental valence states of composites with the incorporation of two metal sulphides are studied, which confirmed the formation of composites. The photocatalytic response of the composites was estimated by photodegradation of Rhodamine B (C28H31ClN2O3–RhB), and the ternary composite CdS/NiS/g-C3N4 samples exhibited the superior photocatalytic performance. Further, the free radical capture and electron paramagnetic resonance (EPR) spectroscopy experiments identified the main active species that contributed to the photocatalytic reaction. Besides, the samples’ photocatalytic performance was evaluated by photocatalytic hydrogen production. The stability of the performance-optimized composite was determined by employing cyclic experiments over five cycles. The CdS/NiS/g-C3N4 showed the highest efficiency of hydrogen production i.e. about 423.37 μmol.g?1.h?1, which is 2.89 times that of the pristine g-C3N4. Finally, two types of heterojunction structures were proposed to interpret the enhanced photocatalytic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号