首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the performance of a ten-cell solid oxide fuel cell (SOFC) stack with a non-uniform flow rate in the stacking direction. The author develops a two-dimensional numerical method to solve the electrochemical, mass and energy equations one stack at a time. The energy equations couple the heat exchange between the interconnector and both the cell and the flowing gas of adjacent cells. Moreover, this paper considers two boundary conditions, adiabatic and constant temperature, on the top and bottom faces of the SOFC. The results show that the non-uniform inlet flow rate of the fuel dominates the current density distribution; it causes the cell voltage to vary by over 13% for both boundary conditions. In addition, the constant temperature condition in this study can produce 3% more power than with the adiabatic condition. On the other hand, the air dominates the temperature field of a SOFC, and the non-uniform inlet flow rate of the air produces a variation of 3% in the average cell temperature of the cells when the boundary condition is adiabatic. This non-uniform effect on the electrical performance of each stack is apparently larger than in the transverse direction, which has been examined in our previous research.  相似文献   

2.
3.
A 5-cell stack with external manifold is thermal cycled between room temperature and 750 °C fifteen times. The electric performances after each cycle are measured and compared. The stack has an initial peak output of 328.44 W and shows excellent stability in thermal cycling. The average operating voltage degradation rate is only 0.8% corresponding each thermal cycle. A cell from the stack is randomly chosen for electrochemical evaluation. Its performance is found to be comparable to a cell which is not thermal cycled. Post-test examination shows deterioration of cathode contact materials at points of contact and cracks throughout the oxide layer between corrugated and bipolar plates to be the main causes of the degradation.  相似文献   

4.
A three-dimensional numerical model based on the finite element method (FEM) is constructed to calculate the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack with external manifold structure. The stack is composed of 5 units which include cell, metallic interconnect, seal and anode/cathode current collectors. The temperature profile is described according to measured temperature points in the stack. It can be clearly seen that the maximum stress concentration area appears at the corner of the components when the stack is heated from room temperature (RT) to 780 °C. The effects of stack components on maximum stress concentration have been investigated under the operation temperature, as well as the thermal stress simulation results. It is obvious that the coefficient of thermal expansion (CTE) mismatch between the interconnect and the seal plays an important role in determining the thermal stress distribution in the stack. However, different compressive loads have almost no effect on stress distribution, and the influence of glass-based seal depends on the elastic modulus. The simulation results can be applied for optimizing the structural design of the stack and minimizing the high stress concentration in components.  相似文献   

5.
Operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell (SIS-SOFC) stack directly on methane is studied. A cone-shaped solid oxide fuel cell stack is assembled by connecting 11 cone-shaped anode-supported single cells in series. The 11-cell-stack provides a maximum power output of about 8 W (421.4 mW cm−2 calculated using active cathode area) at 800 °C and 6 W (310.8 mW cm−2) at 700 °C, when operated with humidified methane fuel. The maximum volumetric power density of the stack is 0.9 W cm−3 at 800 °C. Good stability is observed during 10 periods of thermal cycling test. SEM-EDX measurements are taken for analyzing the microstructures and the coking degrees.  相似文献   

6.
A micro-tubular, solid oxide fuel cell stack has been developed and operated under single-chamber conditions. The stack, made of three single-cells, arranged in triangular configuration, was operated between 500 and 700 °C with varying methane/air mixtures. The results show that the operating conditions for the stack differ significantly than the single-cell operation reported in our earlier study. The stack operated at 600 °C with methane/oxygen mixture of 1.0 gives stable performance for up to 48 h, whereas for the single-cell, this mixing ratio was not suitable. The increase in the inert gas flow rate improves the stack performance up to a certain extent, beyond that; the power output by the stack reduces due to extensive dilution of the reactants. It is concluded that both, the operating conditions and the addition of inert gas, need to be tuned according to the number of cells present within the stack.  相似文献   

7.
It is well known that cell imbalance can lead to failure of batteries. Prior theoretical modeling has shown that similar failure can occur in solid oxide fuel cell (SOFC) stacks due to cell imbalance. Central to failure model for SOFC stacks is the abnormal operation of a cell with cell voltage becoming negative. For investigation of SOFC stack failure by simulating abnormal behavior in a single cell test, thin yttria-stabilized zirconia (YSZ) electrolyte, anode-supported cells were tested at 800 °C with hydrogen as fuel and air as oxidant with and without an applied DC bias. When under a DC bias with cell operating under a negative voltage, rapid degradation occurred characterized by increased cell resistance. Visual and microscopic examination revealed that delamination occurred along the electrolyte/anode interface. The present results show that anode-supported SOFC stacks with YSZ electrolyte are prone to catastrophic failure due to internal pressure buildup, provided cell imbalance occurs. The present results also suggest that the greater the number of cells in an SOFC stack, the greater is the propensity to catastrophic failure.  相似文献   

8.
An anode-supported micro-tubular solid oxide fuel cell (SOFC) is analyzed by a two-dimensional axisymmetric numerical model, which is validated with the experimental I-V data. The temperature distribution generated by the thermo-electrochemical model is used to calculate the thermal stress field in the tubular SOFC. The results indicate that the current transport in the anode is the same at every investigated position. The stress of the micro-tubular cell occurs mainly because of the residual stress due to the mismatch between the coefficients of thermal expansion of the materials of the membrane electrode assembly. The micro-tubular cell can operate safely, but if there is an interfacial defect or a high enough tensile stress applied at the electrolyte, a failure can arise.  相似文献   

9.
A 6 kW class interconnector-type anode-supported tubular solid oxide fuel cell (ICT SOFC) stack is fabricated and operated in this study. An optimized current-collection method, which the method for current collection at the cathode using the winding method and is the method for the connection between cells using interconnect, is suggested to enhance the performance of the fabricated cell. That method can increase the current collection area because of usage of winding method for cell and make the connection between cells easy. The performance of a single cell with an effective electrode area of 205 cm2 exhibits 51 W at 750 °C and 0.7 V. To assemble a 1 kW class stack, the prepared ICT SOFC cells are connected in series to 20 cells connected in parallel (20 cells in series × two in parallel, 20S2P). Four modules are assembled for a 6 kWe class stack. For one module, the prepared ICT SOFC cells are connected in series to 48 cells, in which one unit bundle consists of two cells connected in parallel. The performance of the stack in 3% humidified H2 and air at 750 °C exhibits the maximum electrical power of 7425 W.  相似文献   

10.
During the operation of solid oxide fuel cells (SOFCs), nonhomogeneous electrochemical reactions in both electrodes and boundary conditions may lead to a temperature gradient in the cell which may result in the development of thermal stresses causing the failure of the cell. Thus, in this study, effects of operating parameters (current density, flow configuration and cell size) on the temperature gradient of planar SOFCs are experimentally investigated. Two short stacks are fabricated using a small (16 cm2 active area) and a large size (81 cm2 active area) scandia alumina stabilized zirconia (ScAlSZ) based electrolyte supported cells fabricated via tape casting and screen printing routes and an experimental set up is devised to measure both the performance and the temperature distribution in short stacks. The temperature distribution is found to be uniform in the small short stack; however, a significant temperature gradient is measured in the large short stack. Temperature measurements in the large short stack show that the temperature close to inlet section is relatively higher than those of other locations for all cases due to the high concentrated fuel resulted in higher electrochemical reactions hence the generated heat. The operation current is found to significantly affect the temperature distribution in the anode gas channel. SEM analyses show the presence of small deformations on the anode surface of the large cell near to the inlet after high current operations.  相似文献   

11.
Through mathematical analysis, the performance of micro tubular solid oxide fuel cell (SOFC) is evaluated successfully, which is in good agreement with the experimental data under different fuel flow. The results show that under the condition of high fuel utilization, a part of current path passing through the anode can increase by 16% compared with that under the condition of low fuel utilization, which can reduce the output performance of the cell. In the process of increasing fuel flow, the current gradually increases and reaches the platform value. When the length of cathode is long and the inner diameter of anode is small, the loss can be effectively reduced by changing the thickness of anode tube.  相似文献   

12.
Mechanical performance analysis is important for ensuring the long-term reliability of solid oxide fuel cells (SOFCs). Thermal-mechanical models are constructed to conduct time-dependent mechanical performance analysis of SOFC stack with temperature field obtained by multiphysics modeling. The volume-averaged temperature field is used as comparison. The creep strains are examined with a time step of 10 h for 10,000 h. It reveals: (1) Uniform temperature significantly decreases the stresses, strains, failure probabilities of all stack components. (2) The failure probability of sealant reduced rapidly and the sealant becomes mechanically safer for long-term operation. (3) Creep strain is dominant for anode/sealant/interconnect, but negligible for electrolyte/cathode. All components are predictably safe against strain failure for 100,000 h (4) Creep strains of stack components interact with each other. Coupled analysis of creep strains of anode/sealant/interconnect is mandatory, but the creep strains of electrolyte/cathode may be neglected for studying mechanical evolutions.  相似文献   

13.
A novel design of cone-shaped tubular segmented-in-series solid oxide fuel cell (SOFC) stack is presented in this paper. The cone-shaped tubular anode substrates are fabricated by slip casting technique and the yttria-stabilized zirconia (YSZ) electrolyte films are deposited onto the anode tubes by dip coating method. After sintering at 1400 °C for 4 h, a dense and crack-free YSZ film with a thickness of about 7 μm is successfully obtained. The single cell, NiO-YSZ/YSZ (7 μm)/LSM-YSZ, provides a maximum power density of 1.78 W cm−2 at 800 °C, using moist hydrogen (75 ml min−1) as fuel and ambient air as oxidant.A two-cell-stack based on the above-mentioned cone-shaped tubular anode-supported SOFC is fabricated. Its typical operating characteristics are investigated, particularly with respect to the thermal cycling test. The results show that the two-cell-stack has good thermo-mechanical properties and that the developed segmented-in-series SOFC stack is highly promising for portable applications.  相似文献   

14.
Thermal impacts are the major concern for the designs of electrolyte of Solid Oxide fuel cells (SOFCs) due to the high temperature operating conditions. In this study, the coupling dynamics of electrochemical reacting flows with heat transfer and generations of thermal strains and stresses (thermal impact) of solid electrolyte and porous electrodes are investigated in a single SOFC by numerical simulations. Modeling results from a test case show that the coupling is necessary as the electrochemical and thermal properties of the cell strongly depends on temperature, meanwhile, the thermal strains and stresses on temperature gradients. The differences in current density and thermal strain gradients predicted by coupling and decoupling simulations are as larger as 20% because of the strong dependents of ionic conductivity of the electrolyte material on temperature, the maximum thermal strain, thermal stresses, and temperature are all about 5%. It is identified that the high operation voltage benefits to the thermal strain, which decreases 20% when the cell operating from 0.5 V–0.7 V.  相似文献   

15.
Mechanical stability and integrity are the pre-requisites for the long-term stable high power output of solid oxide fuel cell (SOFC) stacks. However, most of the previous research concentrated on improving the electrochemical performance of SOFC stacks, while the mechanical stability is rarely studied. In this study, a three-dimensional electro-thermo-mechanical coupled model is established to study the impact of interconnector (IC) structure on electrical performance and mechanical stability of SOFC simultaneously. It reveals that IC design with discrete ribs can enhance the maximum power density by up to 12.96%. The maximum principal stress value of positive electrode-electrolyte-negative electrode (PEN) is slightly influenced by IC design, while the stress distribution characteristic is obviously dominated by geometrical structure of IC. Compared with symmetrically arranged ICs at anode and cathode side, the unsymmetrical IC design with regularly discrete cubic, staggered discrete cubic, and discrete cylindrical ribs at cathode side and traditional IC design at anode side can respectively decrease the thermal stress of IC by 19.31%, 6.39%, and 12.09%, while the thermal stress of IC can be further released by 29.44% and 16.44% by rounding the corners of regularly arranged, and staggered distributed cubic ribs. By using new IC design, the failure probability of PEN is reduced by up to 28.97%, while increased by 8.37% only for the case with traditional IC at anode side and staggered cubic ribs at cathode side. To balance the electrical power output and mechanical stability, the discrete cylindrical ribs and discrete cubic ribs with rounded corners are better choices.  相似文献   

16.
A 3D integrated numerical model is constructed to evaluate the thermal-fluid behavior and thermal stress characteristics of a planar anode-supported solid oxide fuel cell (SOFC). Effects of anode porosity on performance, temperature gradient and thermal stress are investigated. Using commercial Star-CD software with the es-sofc module, simulations are performed to obtain the current-voltage (I-V) characteristics of a fuel cell as a function of the anode porosity and the temperature distribution within the fuel cell under various operating conditions. The temperature field is then imported into the MARC finite element analysis (FEA) program to analyze thermal stresses induced within the cell. The numerical results are found to be in good agreement with the experimental data. It is shown that the maximum principal stress within the positive electrode-electrolyte-negative electrode (PEN) increases at a higher current and a higher temperature gradient. It is recommended that the temperature gradient should be limited to less than 10.6 °C mm−1 to maintain the structural integrity of the PEN.  相似文献   

17.
This paper uses finite element method to study the effect of Al2O3 film on thermal stresses in the bonded compliant seal (BCS) design of a planar solid oxide fuel cell. The effects of Al2O3 thickness, operating temperature, window frame thickness, foil thickness and cell length on thermal stresses have been discussed. The results show that compressive stresses are generated in Al2O3 film. A bowing deformation is generated due to the BCS design, which can trap and relax some thermal stresses. With Al2O3 thickness increase, compressive stresses in Al2O3 film and foil are decreased slightly, while tensile stresses in BNi2 and frame are increased. With operating temperature increase, compressive stress in Al2O3 is increased greatly, while the stresses in foil, BNi2 and frame are increased slightly. The bowing deformation is increased with operating temperature increase. The window frame thickness has little effect on thermal stresses and bowing deformation. With sealing foil thickness increase, thermal stresses and bowing deformation are increased. The cell length has little effect on thermal stresses, but reducing the cell length can decrease the bowing deformation.  相似文献   

18.
This paper points out an error in the literature and analyzes its effect on electrochemical models of solid oxide fuel cell stacks. A correction is presented.  相似文献   

19.
A 3-cell stack of anode supported planar solid oxide fuel cell was built to evaluate the application of an external-manifold design in this research. This short stack was operated with hydrogen as fuel and air as oxidant at 750 °C. The stack had an OCV of 3.36 V, produced about 100 W in total power with a power density of 0.56 W/cm2. The stack also underwent 51 h degradation test at the current density of 0.55 A/cm2. The test results have demonstrated that this external-manifold stack had an excellent and steady performance during the test. Computer simulation was employed to help optimizing the parameters of the design and explaining the different performances between the cells. The simulation results suggested that the external-manifold design could generate a uniform gas distribution for a short stack, and the different performances of the individual cells were mainly caused by the uneven temperatures distribution between the cells.  相似文献   

20.
Solid oxide fuel cell directly and efficiently converts chemical energy to electrical energy. However, the necessity for high operating temperatures can result in mechanical failure. Fuel cell is a multilayer system and its stress distribution is greatly affected by the interface morphology. In this work, cosine interfaces with different amplitudes are used to approximate the fluctuation of actual interface. The effects of interface morphology on stress state, energy release rate of crack and creep behavior have been investigated. The results show that if the interface is planar, the residual normal stress component is zero on the interface, while the nonplanarity of interface can cause the normal stress Sn and shear stress St on the interface. When the amplitude is relatively small, the max values of Sn and St on the interfaces vary linearly with increasing amplitudes in both anode and cathode. Above a certain value, nonlinearity of the interface becomes important. Max tensile Sn always occurs at the peak of convex interface, but the position of max compressive Sn varies. Max shear stress is prone to occur at 1/4 of the wavelength at small amplitude and moves towards 1/2 of the wavelength when the amplitude increases. Fracture mechanics analysis shows that the surface crack possibly penetrates into the anode function layer and then is constrained by the stiff electrolyte. On the other hand, the horizontal crack likely penetrates into the electrolyte layer when the interface is not planar. Creep analysis shows that 11 800 hours of continuous operation at high temperature cannot remove stress undulation introduced by nor-planar interface but can make max value of Sn and St decrease around 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号