首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Facilitating the separation of photoexcited electron-hole pairs and enhancing the migration of photogenerated carriers are essential in photocatalytic reaction. CoS/g-C3N4/NiS ternary photocatalyst was prepared by hydrothermal and physical stirring methods. The optimized ternary composite achieved a hydrogen yield of 1.93 mmol g?1 h?1, 12.8 times that of bare g-C3N4, with an AQE of 16.4% at 420 nm. The enhanced photocatalytic activity of CoS/g-C3N4/NiS was mainly ascribed to the synergistic interaction between the Z-scheme heterojunction constructed by CoS and g-C3N4 and the NiS co-catalyst featuring a large amount of hydrogen precipitation sites, which realized the efficient separation and migration of photogenerated carriers. In addition, the CoS/g-C3N4/NiS heterojunction-co-catalyst system exhibited excellent photocatalytic stability and recyclability.  相似文献   

2.
Excellent light harvest, efficient charge separation and sufficiently exposed surface active sites are crucial for a given photocatalyst to obtain excellent photocatalytic performances. The construction of two-dimensional/two-dimensional (2D/2D) or zero-dimensional/2D (0D/2D) binary heterojunctions is one of the effective ways to address these crucial issues. Herein, a ternary CdSe/WS2/g-C3N4 composite photocatalyst through decorating WS2/g-C3N4 2D/2D nanosheets (NSs) with CdSe quantum dots (QDs) was developed to further increase the light harvest and accelerate the separation and migration of photogenerated electron-hole pairs and thus enhance the solar to hydrogen conversion efficiency. As expected, a remarkably enhanced photocatalytic hydrogen evolution rate of 1.29 mmol g−1 h−1 was obtained for such a specially designed CdSe/WS2/g-C3N4 composite photocatalyst, which was about 3.0, 1.7 and 1.3 times greater than those of the pristine g-C3N4 NSs (0.43 mmol g−1 h−1), WS2/g-C3N4 2D/2D NSs (0.74 mmol g−1 h−1) and CdSe/g-C3N4 0D/2D composites (0.96 mmol g−1 h−1), respectively. The superior photocatalytic performance of the prepared ternary CdSe/WS2/g-C3N4 composite could be mainly attributed to the effective charge separation and migration as well as the suppressed photogenerated charge recombination induced by the constructed type-II/type-II heterojunction at the interfaces between g-C3N4 NSs, CdSe QDs and WS2 NSs. Thus, the developed 0D/2D/2D ternary type-II/type-II heterojunction in this work opens up a new insight in designing novel heterogeneous photocatalysts for highly efficient photocatalytic hydrogen evolution.  相似文献   

3.
The development of efficient and stable noble-metal-free photocatalysts is crucial for hydrogen evolution from water splitting as clean energy. This study reports uniform CdS/NiS spherical nanoparticles through a simple one-pot hydrothermal method with the aid of KOH. The prepared CdS/NiS composites show superior photocatalytic activities toward the water splitting under visible light. A suitable amount of KOH in the synthesis benefits to form CdS/NiS photocatalysts with the improved activity. The CdS/NiS composite including 10 mol% metal percentage of Ni exhibits the highest photocatalytic activity. The high hydrogen evolution rate of 24.37 mmol h?1 g?1 is achieved over the CdS/NiS composite photocatalyst. The CdS/NiS photocatalyst has good photocatalytic stability in the recycling uses. The present CdS/NiS as a noble-metal-free photocatalyst provides the superior visible-light driven catalytic activity for hydrogen evolution.  相似文献   

4.
A ternary composite photocatalyst of nickel sulfide supported on the heterojunction of ultrathin cadmium sulfide-carbon based on g-C3N4 nanosheets was prepared by aqueous-phase in low-temperature innovatively, and its chemical compositions were confirmed by XRD, FT-IR and XPS. The morphology of two-dimensional nanosheet heterojunction was verified by SEM, TEM, HRTEM and BET, and the addition of nickel is beneficial to improve the specific surface area of the catalyst. The larger surface area was more beneficial to accelerate the carrier migration and reactant diffusion. Meanwhile, the electron structures were analyzed by UV–vis, work function, bader charge and ELF charge calculated by GGA-PBE, which proved that the electrons at heterojunction interface of CdS–C3N4 were transferred from g-C3N4 to CdS, and the strong interaction existed in two layers between CdS and g-C3N4 by reformed the bonds of Cd–N, and the doping Ni can regulate the interface electron transport mechanism of CdS–C3N4 heterojunction. The hydrogen evolution performance showed that the ternary composite photocatalyst was better than both of the single system of cadmium sulfide or carbon nitride and the binary system containing NiS–CdS or CdS–C3N4. Through the characterization and theoretical calculation of the results, we found that the synergistic effect of NiS–CdS–C3N4 system could solve the problems of high recombination rate of photo-electrons and holes, and insufficient active sites existing in single materials of g-C3N4 or CdS during the photocatalytic reaction.  相似文献   

5.
A novel series of CeO2 nanoparticles (CeNP) loaded two-dimensional (2D) graphite carbon nitride nanosheet (CeNP/g-C3N4) composites which possess heterojunction are prepared with different proportions of CeNP by a reliable and straightforward method. The samples were employed to degrade the rhodamine B (RhB) and produce hydrogen. The microstructure, morphology, composition and surface chemical states of the samples are analyzed, and the ability of the photoelectric response is characterized. The characterization ensures uniform loading of CeNP over the g-C3N4 surface and a co-existence of Ce3+/Ce4+ in the CeNP/g-C3N4 composite. The FT-IR spectra have revealed the changes in the local dipole moment of amino groups, vibration mode of the constituent functional group and electronegativity, indicating the electric interaction between CeNP and g-C3N4. The photocatalytic hydrogen evolution efficiency of the CeNP/g-C3N4 increased initially and then decreased with the increasing of loaded CeNP. The CeNP/g–C3N4–C with 20 mg of CeNP was found to be the optimum proportion, which exhibited outstanding separation efficiency of the photo-generated carriers. The electron spin-resonance (ESR) spectra exhibit that the production of superoxide free radicals (?O2?) was much higher than that of hydroxyl free radicals (?OH) indicating that ?O2? species play a predominant role in the photocatalytic action. The mechanism for enhanced photocatalytic activity of the CeNP/g-C3N4 is attributed to the interfacial optimization, which improved the photo-generated carrier separation.  相似文献   

6.
Heterojunction photocatalysts based on semiconducting nanoparticles show excellent performance in many photocatalytic reactions. In this study, 0D/0D heterojunction photocatalysts containing CdS and NiS nanoparticles (NPs) were successfully synthesized by a chemical precipitation method. The NiS NPs were grown in situ on CdS NPs, ensuring intimate contact between the semiconductors and improving the separation efficiency of hole-electron pairs. The obtained NiS/CdS composite delivered a photocatalytic H2 evolution rate (7.49 mmol h?1 g?1), which was 39.42 times as high as that of pure CdS (0.19 mmol h?1 g?1). This study demonstrates the advantages of 0D/0D heterojunction photocatalysts for visible light-driven photocatalytic hydrogen production.  相似文献   

7.
Ni2P nanoparticles and CdS nanorods were grew together on a mesoporous g-C3N4 through a facile in-situ solvothermal approach. Under visible light (λ > 400 nm), the as-prepared ternary PCN–CdS-5% Ni2P composite displays a high H2 evolution rate with 2905.86 μmol g?1 h?1, which is about 14, 18 and 279 times that of PCN–CdS, PCN–Ni2P and PCN, respectively. The enhanced photocatalytic activity is mainly attributed to the improved separation efficiency of the photocarriers by the type II PCN–CdS heterojunction and the effective extraction of photogenerated electrons by Ni2P. Meanwhile, Ni2P acts as co-catalyst to provide the photocatalytic active site for hydrogen reduction. In addition, PCN–CdS-5% Ni2P composite exerts good stability in 12-h cycles.  相似文献   

8.
A novel visible-light-active CdS@g-C3N4 photocatalyst was synthesized via a chemisorption method. This core@shell structure catalyst exhibited enhanced photocatalytic H2 production activity under visible-light (λ ≥ 420 nm) irradiation. The nano-sheet g-C3N4 was successfully coated on CdS nanoparticles with intimate contact. When the content of g-C3N4 in the hybridized composite is 3 wt. %, the hydrogen-production rate of the CdS@g-C3N4 is 2.5 and 2.2 times faster than pure CdS and bulk g-C3N4, respectively. Superior stability was also observed in the cyclic runs. The improvement in stability and activity result from the ability of the π-conjugated g-C3N4 material in transporting photo-induced holes. The core@shell structure promoted separation of the photo-generated electron-hole pair and accelerated the emigration speed of the hole from the valence band of CdS. This effect also results in a greatly improved amount of hydrogen production. The possible mechanism for the photocatalytic activity and stability of CdS@g-C3N4 are tentatively proposed.  相似文献   

9.
Well dispersed CdS quantum dots were successfully grown in-situ on g-C3N4 nanosheets through a solvothermal method involving dimethyl sulfoxide. The resultant CdS–C3N4 nanocomposites exhibit remarkably higher efficiency for photocatalytic hydrogen evolution under visible light irradiation as compared to pure g-C3N4. The optimal composite with 12 wt% CdS showed a hydrogen evolution rate of 4.494 mmol h−1 g−1, which is more than 115 times higher than that of pure g-C3N4. The enhanced photocatalytic activity induced by the in-situ grown CdS quantum dots is attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N4 and CdS, which leads to effective charge separation on both parts.  相似文献   

10.
Platinum-based alloy materials as effective cocatalysts in improving the performance of photocatalytic H2 production have raised great interest. Herein, a facile strategy of chemical reduction is established to synthesize bimetallic PtNi nanoparticles on 2D g-C3N4 nanosheets with excellent photocatalytic activity. The addition of PtNi nanoparticles can provide new H+ reduction sites and increase more active sites of the material. The synergistic effect between PtNi alloy nanoparticles and 2D g-C3N4 nanosheets can regulate electronic structure, narrow the band, accelerate charge transfer efficiency and inhabit the recombination of photo-induced electron (e) and hole pairs (h+), contributing to the improvement of hydrogen evolution activity. The optimal hydrogen evolution rate of Pt0.6Ni0.4/CN shows higher hydrogen evolution rate (9528 μmol·g−1·h−1), which is 13.1 times than that of pure g-C3N4 nanosheets. Besides, a possible mechanism of photocatalytic hydrogen generation has been brought up according to a series of physical and chemical characterization. This work also provides a potential idea of developing cocatalysts integrating metal alloys with 2D g-C3N4 nanosheets for promoting photocatalytic hydrogen evolution.  相似文献   

11.
Transition metal phosphides are considered as the most prospective replacements for noble metal cocatalysts used for H2 evolution during photocatalytic water splitting. In this work, Ni2P/g-C3N4 composite photocatalyst was synthesized using a simple in-situ hydrothermal method by one step. Benefiting from the excellent light trapping, efficient transfer of charge carriers and strong stability of Ni2P nanoparticles, as well as the stable interface contact between Ni2P and g-C3N4, the Ni2P/g-C3N4 exhibit greatly enhanced H2 evolution performance during photocatalytic water splitting. The optimized H2 evolution rate can reach 3344 μmol h?1 g?1 over 17.5 wt% Ni2P/g-C3N4, which is 68.2 times greater than that of pure g-C3N4 and even much greater than that of 15 wt% Pt/g-C3N4. The apparent quantum efficiency (QE) is about 9.1% under 420 nm monochromatic. The enhancement mechanism was demonstrated in detail by transient photocurrent responses, photoluminescence spectra and electrochemical impedance spectroscopy. This work develops a facile strategy to fabricate transition metal phosphide/semiconductor heterojunction systems with potential application for photocatalytic H2 evolution.  相似文献   

12.
Large-surface-area mesoporous Nb2O5 microspheres were successfully grown in-situ on the surface of g-C3N4 nanosheets via a facile solvothermal process with the aid of Pluronic P123 as a structure-directing agent. The resultant g-C3N4/Nb2O5 nanocomposites exhibited enhanced photocatalytic activity for H2 evolution from water splitting under visible light irradiation as compared to pure g-C3N4. The optimal composite with 38.1 wt% Nb2O5 showed a hydrogen evolution rate of 1710.04 μmol h?1 g?1, which is 4.7 times higher than that of pure g-C3N4. The enhanced photocatalytic activity could be attributed to the sufficient contact interface in the heterostructure and large specific surface area, which leads to effective charge separation between g-C3N4 and Nb2O5.  相似文献   

13.
A series of MnO2/g-C3N4 composites with different exposed crystal plane were successfully prepared by different synthesized method. UV–Vis, PL, ESR and electrochemical results suggest that the visible-light absorbance, photoexcited electron-separation efficiency and oxygen defects are greatly dependent on the exposed crystal-faceted MnO2 supported on g-C3N4. The experimental results display that the exposed crystal plane of MnO2 have great influences on the photocatalytic hydrogen evolution performance, and the m-MnOCN composite with exposed (111) crystal plane exhibits superior photocatalytic performance for the release of H2 under visible light irradiation, followed by the order of b-MnOCN [002]> p-MnOCN [110]. Moreover, Mechanism studies have shown that the possible mechanism of photocatalytic hydrogen evolution reaction is Z-scheme mechanism.  相似文献   

14.
Although graphitic carbon nitride (g-C3N4) is widely used for photocatalytic hydrogen production, its practical application is restricted by the high recombination rate of photoinduced electron-hole pairs and limited active sites. In this work, holey ultrathin g-C3N4 nanosheets (HCN NSs) with rich active sites are prepared, followed by the growth of 1T-MoS2 NSs on their surfaces to construct 2D/2D 1T-MoS2/HCN heterostructure. Due to the high surface area and abundant hydrogen active sites of the hybrid, large and intimate 2D nanointerface between MoS2 and HCN, hydrogen ion adsorption and charge separation/transport ability are greatly enhanced. As a result, 1T-MoS2/HCN-4 with the optimal 1T-MoS2 content of 8 wt% displays the highest H2 production rate of 2724.2 μmol?1 h?1 g?1 under simulated solar light illumination with apparent quantum efficiency of 8.1% (λ = 370 nm). Moreover, the 1T-MoS2/HCN-4 hybrid manifests improved stability after a long-time test. This study opens the door to design highly-efficient g-C3N4 based 2D/2D heterostructures for photocatalytic H2 production.  相似文献   

15.
In this study, a ternary photocatalyst named Ag–AgBr/g-C3N4/ZIF-8 (A/g/Z) was prepared by ionic liquid assisted in-situ growth method. The structure and composition of samples are studied by means of XRD, SEM, XPS, TEM, EIS, etc. The AgBr prepared by ionic liquid assisted method has good dispersion, and the protonated carbon nitride has better specific surface area and morphology structure. The structure of the composites is optimized by modifying g-C3N4 with MOFs and noble metals, and the existence of Ag+ can play a bridging role, so as to form multi-path electronic transmission route. The high efficiency of electron transfer greatly improved the efficiency of hydrogen evolution. It is worth noting that the surface plasmon resonance (SPR) effect produced by silver ions on the surface of g-C3N4 can improve the absorption of visible light. The A (1.1)/g/Z (6.5) exhibit high hydrogen evolution efficiency (2058 μmol g?1 h?1, which is 49 times than g-C3N4) at the absence of Pt co-catalyst. Furthermore, the transient photocurrent density of the composites is much higher than that of g-C3N4 and AgBr, the semicircle radius of EIS is also less than both. Through the five cycle experiment, the photocatalytic efficiency of the composite material remained above 91%.  相似文献   

16.
Nowadays, energy shortage is one of the major problems in the world. Photocatalytic hydrogen production is a new type of energy technology with good application prospect. As a new type of photocatalytic semiconductor material, g-C3N4 has attracted much attention as a photocatalyst. By ultrasonic treatment of a mixed solution of g-C3N4 and bovine serum albumin, followed by adding a certain amount of silver nitrate solution and then directly hydrothermal treatment, a special dandelion-like g-C3N4/Ag (D-g-C3N4/Ag) was prepared. The scanning electronic microscopy, transmission electronic microscopy, X-ray diffraction, Fourier transform infrared, fluorescence and physicochemical adsorption methods were used to characterize the morphology and structure of D-g-C3N4/Ag. In addition, the photocatalytic H2 production of D-g-C3N4/Ag with different Ag loadings or in different sacrificial agents and different pH conditions were investigated. The results indicated that when triethanolamine was used as sacrificial agent, photocatalytic hydrogen efficiency was the best, and the rate of photocatalytic hydrogen production reached 862 μmol g−1 h− 1 as the Ag loading was 4%.  相似文献   

17.
Ceria dioxide supported on graphitic carbon nitride (CeO2/g-C3N4) composites were facilely synthesized to be application for photocatalytic hydrogen (H2) generation in this present work. The physical and chemical properties of CeO2/g-C3N4 nanocomposites were determined via a series of characterizations. The CeO2/g-C3N4 composites prepared by facile thermal annealing and rotation-evaporation method exhibit excellent photocatalytic H2 evolution with visible-light illumination. The best hydrogen generation rate of CeO2/g-C3N4 composite with 1.5 wt% Pt is 0.83 mmol h−1 g−1, which is almost same as that of composite with 3 wt% Pt prepared by simple physical mixing method. The significantly developed photocatalytic activity of CeO2/g-C3N4 composite is majorly ascribed to the stronger interfacial effects with the more visible-light absorbance and faster electron transfer. This work reveals that construction of the CeO2/g-C3N4 composite with high disperse and close knit by the facile thermal annealing and rotation-evaporation method could be an effective method to achieve excellent photocatalytic hydrogen evolution performance.  相似文献   

18.
CdS/Zn2GeO4 (CG) composites were synthesized through the simple hydrothermal process. The crystal structure, morphology and light absorption property of the products were studied in detail. The CG composites showed excellent photocatalytic hydrogen production performance upon visible light illumination. Especially, the CG-3 composite displayed the highest H2 evolution rate of 1719.8 μmol h−1 g−1, which was about 3.80 and 4.28 times higher than the pure CdS and Zn2GeO4. Besides, the cyclic stability of the CG-3 composite was also excellent. The PL, photocurrent response and EIS spectra results testified that the efficient separation and transfer of photoinduced charge carriers achieved between CdS and Zn2GeO4, which could result in the promotion of photocatalytic performance. Moreover, a possible mechanism of H2 generation over CdS/Zn2GeO4 heterojunction was discussed. The practicable way to construct heterojunction composites would be helpful for the design of other systems with excellent photocatalytic property.  相似文献   

19.
Photocatalytic hydrogen evolution plays a critical role in the exploration of the clean and sustainable energy. Owing to its special structure and features, two-dimensional (2D) graphitic carbon nitride (g-C3N4) has attracted tremendous attention. However, some deficiencies of pristine g-C3N4 inhibit its photocatalytic application, particularly the low quantum efficiency of hydrogen evolution. Therefore, it is valuable to develop 2D new composites based on g-C3N4 so that the synergistic effects of the two original materials can be achieved. This article attempts to summarize the modification strategies of 2D g-C3N4-based composites, including the construction of heterojunctions, morphology control, doping method, surface modification and co-catalyst loading. The application and progress in photocatalytic hydrogen evolution are also highlighted. The limitations are taken into account to provide further information for the improvement in the quantum efficiency of hydrogen by 2D g-C3N4-based composites.  相似文献   

20.
Al-water reaction for hydrogen production faces the problems of long induction time and low conversion efficiency at low temperature (below 273.15 K), which has seriously limited its applications. To realize the instant hydrogen production of Al composites at low temperature, low melting point metals (Ga, In, Sn) and additives (NaCl, g-C3N4, LiH) were selected to prepare Al composites with high reactivity. Compared with the other Al composites, Al alloy/NaCl/LiH/g-C3N4 composites exhibit the enhanced low temperature hydrogen production performance in 23 wt% NaCl aqueous solution at 253.15 K. For all Al alloy/NaCl/LiH/g-C3N4 composites, the induction time of Al-water reaction at 253.15 K has completely eliminated. The highest hydrogen generation volume of 1095 mL·gAl?1 and the maximum hydrogen generation rate of 120 mL·gAl?1·s?1 were obtained for Al alloy/NaCl/1.5%LiH/g-C3N4 composite. It is proposed that LiH can induce Al-water reaction instantly starting at 253.15 K. The released heat and micro alkaline environment further promote the Al-water reaction and enhance the hydrogen conversion efficiency. In particular, g-C3N4 additive can improve the antioxidant properties of Al composites. This study provides a novel way for the development and application of Al composites in real-time hydrogen production at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号