首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel power and hydrogen coproduction system is designed and analyzed from energetic and economic point of view. Power is simultaneously produced from parabolic trough collector power plant and molten carbonate fuel cell whereas hydrogen is generated in a three-steps Cu–Cl thermochemical cycle. The key component of the system is the molten carbonate fuel cell that provides heat to others (Cu–Cl thermochemical cycle and steam accumulator). A mathematic model is developed for energetic and economic analyses. A parametric study is performed to assess the impact of some parameters on the system performance. From calculations, it is deduced that electric energy from fuel cell, solar plant and output hydrogen mass are respectively 578 GWh, 25 GWh and 306 tons. The overall energy efficiency of the proposed plants is 46.80 % and its LCOE is 7.64 c€/kWh. The use of MCFC waste heat allows increasing the solar power plant efficiency by 2.15 % and reducing the annual hydrogen consumption by 3 %. Parametric analysis shows that the amount of heat recovery impacts the energy efficiency of fuel cell and Cu–Cl cycle. Also, current density is a key parameter that influences the system efficiency.  相似文献   

2.
This paper proposes a novel combined cooling, heating, and power (CCHP) system integrated with molten carbonate fuel cell (MCFC), integrated solar gas-steam combined cycle (ISCC), and double-effect absorption lithium bromide refrigeration (DEALBR) system. According to the principle of energy cascade utilization, part of the high-temperature waste gas discharged by MCFC is led to the heat recovery steam generator (HRSG) for further waste heat utilization, and the other part of the high-temperature waste gas is led to the MCFC cathode to produce CO32?, and solar energy is used to replace part of the heating load of a high-pressure economizer in HRSG. Aspen Plus software is used for modeling, and the effects of key factors on the system performances are analyzed and evaluated by using the exergy analysis method. The results show that the new CCHP system can produce 494.1 MW of electric power, 7557.09 kW of cooling load and 57,956.25 kW of heating load. Both the exergy efficiency and the energy efficiency of the new system are 61.69% and 61.64%, respectively. Comparing the research results of new system with similar systems, it is found that the new CCHP system has better ability to do work, lower CO2 emission, and can meet the cooling load, heating load and electric power requirements of the user side at the same time.  相似文献   

3.
In recent years, there has been increasing interest in fuel cell hybrid systems. In this paper, a novel multi-generation combined energy system is proposed. The system consists of a molten carbonate fuel cell (MCFC), a thermally regenerative electro-chemical cycle (TREC), a thermo photovoltaic cell (TPV), an alkaline electrolyzer (AE) and an absorption refrigerator (AR). It has four useful outputs, namely electricity, hydrogen, cooling and heating. The overall system is thermodynamically modeled in a detailed manner while its simulation and modeling are done through the TRNSYS software tool. Power output, cooling-heating and produced hydrogen rates are determined using energetic and exergetic analysis methods. Results are obtained numerically and plotted. The maximum power output from the system is 16.14 kW while maximum energy efficiency and exergy efficiency are 86.8% and 80.4%,. The largest exergy destruction is due to the MCFC.  相似文献   

4.
A novel combined molten carbonate fuel cell – steam turbine based system is proposed herein. In this cycle, steam is produced through the recovery of useful heat of an internal reforming MCFC and operates as work fluid in a Rankine cycle. Exergoeconomic analysis was performed, in order to verify the technical feasibility, including which components could be improved for greater efficiencies, as well as the cost of the power generated by the plant. A 10 MW MCFC was initially proposed, when the system reached 54.1% of thermal efficiency, 8.3% higher than MCFC alone, 11.9 MW of net power, 19% higher than MCFC alone, and an energy cost of 0.352 $/kWh. A sensitivity analysis was carried out and the parameters that most influenced on the cost were pointed out. The analysis pointed to the MCFC generation as the most impactful factor. By manipulating these values, it could be noted a significant power cost decrease, reaching satisfactory values to become economically feasible. The concept of economy of scale could be noticed in the proposed system, proving that a large-scale plant could be the focus of investment and public policies.  相似文献   

5.
In this paper, a novel syngas-fed combined cogeneration plant, integrating a biomass gasifier, a molten carbonate fuel cell (MCFC), a heat recovery steam generator (HRSG) unit, a Stirling engine, and an organic Rankine cycle (ORC), is introduced and thermodynamically analyzed to recognize its potentials compared to the previous solo/combined systems. For the proposed system, energetic, exergetic as well as environmental evaluations are performed. Based on the results, the gasifier and the fuel cell have a significant contribution to the exergy destruction of the system. Through a parametric study, the current density and the stack temperature difference are known as the main effective factors on the plant performance. Meanwhile, dividing the whole system into three sub-models, i.e., model (1): power production plant including the gasifier and MCFC without including Stirling engine, HRSG, and ORC unit, model (2): the cogeneration system without ORC unit, and model (3): the whole cogeneration system, an environmental impact assessment is carried out regarding CO2 emission. Considering paper as biomass revealed that maximum value of exergy efficiency is 50.18% with CO2 emissions of 28.9 × 10−2 t.MWh−1 which compared to the solo MCFC system indicates 28.40% increase and 13.3 × 10−2 t.MWh−1 decrease in exergy efficiency and CO2 emission, respectively.  相似文献   

6.
This study aims to present a novel tri-generation plant consisting of a molten carbonate fuel cell (MCFC) unit coupled with a Stirling engine (SE), a heat recovery steam generator (HRSG), and two types of absorption refrigeration cycles (ARCs), i.e., Generator Absorber eXchanger (GAX) and Vapour Absorption Refrigeration (VAR). The proposed system is evaluated from energy, exergy, as well as environmental impact (3E) points of view. To carry out the parametric study, three sub-models are also introduced for the whole system. The sub-model (1) investigates the solo MCFC with the new configuration. In the sub-model (2), the SE and HRSG are added to boost the power generation and overall system efficiency through employing the heat wasted in the sub-model (1). In the last sub-model, for cooling purposes, the surplus heat of MCFC is reutilized using an absorption refrigeration cycle. Besides, to make a comparative study between GAX and VAR systems, the sub-model (3) is classified into two different schemes: (a) with a VAR cycle, and (b) with a GAX cycle. The results reveal that the exergy efficiency and CO2 emissions of the sub-models (1), (2), and (3) are 48.04%, 51.24%, 52.35% (VAR cycle), 52.12% (GAX cycle), 0.388 t/MWh, 0.364 t/MWh, 0.357 t/MWh (VAR cycle), and 0.358 t/MWh (GAX cycle), respectively. Either with GAX or VAR cycle, the proposed system indicates an acceptable standard of functionality in thermodynamic and environmental perspectives.  相似文献   

7.
Hydrogen is rapidly turning into one of the essential energy carriers for future sustainable energy systems. The main reason for this is the possibility of off-peak excess power production and storage of renewable stations such as wind farms, photovoltaic plants, etc. For hydrogen (itself) or its sub-productions methanol, ammonia, etc. Such energy systems are so-called power2X technologies. For hydrogen and other biogases, using a fuel cell is a promising method for returning the fuel to the power grid or electric cars in the form of electricity. In this paper, a novel hybrid energy system consisting of a molten carbonate fuel cell (MCFC) and different options to generate hydrogen from the waste heat of the MCFC is investigated. The system consists of two scenarios of weather using proton exchange membrane electrolyzer (PEME) of vanadium chloride (VCL) cycle. The article presents a comprehensive thermodynamic, economic, and environmental analysis of the system optimized by tri-objective optimization (as an innovative optimization) methods. The aim of the optimization task here is to minimize the costs and emissions while maximizing efficiency. A parametric study is conducted to see the effect of different design parameters on the system's performance. Results demonstrate that fuel utilization factor, stack temperature, and current density have the most critical effect on the system performance. In addition, the system coupled with the VCL cycle exhibits better performance than the system with PEME. In addition, at the optimized point, the efficiency, cost rate, and emission become 69.28%, 3.73 ($/GJ), and 1.16 kg/kWh, respectively. In addition, the produced hydrogen in VCL and PEME are 585 kg/day and 293 kg/day respectively.  相似文献   

8.
Since biomass resources can be found with different contents in most regions of the world, biomass/gasification (Biog) coupling processes can be considered as an attractive and useful technology for integrating in polygeneration configurations. In this regard, a new polygeneration energy configuration based on Biog process is proposed and its conceptual analysis is presented. In the new energy process, a Rankine cycle, a water electrolysis cycle (based on solid oxide electrolyzer, SOE), and a multi-effect desalination (MED) unit are embedded to generate electricity, hydrogen fuel, and freshwater, respectively. The considered polygeneration configuration is comprehensively investigated and discussed utilizing a parametric evaluation and from thermodynamic, energetic and exergoeconomic points of view. Relying on the proposed system can provide a new approach to produce carbon-free hydrogen fuel and freshwater in order to achieve an efficient, modern and green polygeneration configuration. The results indicated that the electrical power generated by the considered polygeneration configuration is close to 1735 kW. In addition, the system is capable of producing almost 9880 kg/h of freshwater and 12.3 kg/h of hydrogen. In such a context, the energy efficiency and total products unit exergy cost were 36.4% and 16.6 USD/GJ, respectively. Also, the system could achieve an exergy efficiency of nearly 17.1%. Moreover, about 8.9 MW of process's exergy is destroyed. The performance of the proposed polygeneration configuration using four different biomass fuels is compared. It was determined that the total products unit exergy costs under paddy husk and paper biomass are approximately 14.8% and 8.6% higher than MSW, respectively.  相似文献   

9.
In this work, a novel thermochemical cycle (Boron-based) to produce ammonia is coupled with chemical looping combustion (CLC) process to produce final primary products of ammonia, CO2, water, and electricity. Manganese oxide-based CLC provides high purity N2, water and thermal energy for the carbothermal reduction of liquefied natural gas (LNG) occurring at 1200 °C. Gaseous synthesis gas from the carbothermal reduction is used as a fuel in the CLC's fuel reactor. Ammonia is produced through the hydrolysis of boron nitride (BN) and liquefied at atmospheric pressure. Thermodynamic equilibrium computations are used to predict the conversions of reactions involved in this proposed system. The overall system is then evaluated from energetic and exergetic perspectives to reflect upon the efficiency of reactors and subsystems. The production of approximately 25 metric t/h of NH3 is achieved while power production reaches 232 MW. The exergetic efficiency of the overall system is calculated to be 53.8%. Moreover, life cycle assessments are performed to assess boron oxide environmental impacts and evaluated the exergy-based allocation of greenhouse gases emission to ammonia at 0.772 kg CO2 (eq.)/kg NH3. About 61% reduction in emissions relative to the global average of ammonia synthesis is estimated.  相似文献   

10.
Rice straw is a potential energy source for power generation. Here, a biomass-based combined heat and power plant integrating a downdraft gasifier, a solid oxide fuel cell, a micro gas turbine and an organic Rankine cycle is investigated. Energy, exergy, and economic analyses and multi-objective optimization of the proposed system are performed. A parametric analysis is carried out to understand the effects on system performance and cost of varying key parameters: current density, fuel utilization factor, operating pressure, pinch point temperature, recuperator effectiveness and compressors isentropic efficiency. The results show that current density plays the most important role in achieving a tradeoff between system exergy efficiency and cost rate. Also, it is observed that the highest exergy destruction occurs in the gasifier, so improving the performance of this component can considerably reduce the system irreversibility. At the optimum point, the system generates 329 kW of electricity and 56 kW of heating with an exergy efficiency of 35.1% and a cost rate of 10.2 $/h. The capability of this system for using Iran rice straw produced in one year is evaluated as a case study, and it is shown that the proposed system can generate 6660 GWh electrical energy and 1140 GWh thermal energy.  相似文献   

11.
In this paper, we have proposed a new solar thermal power cycle which integrates methanol decomposition and middle-temperature solar thermal energy, and investigated its features based on the principle of the cascade utilization of chemical exergy. Also, the methanol decomposition with a catalyst was experimentally studied at temperatures of 150–300 °C and under atmospheric pressure. The chemical energy released by methanol fuel in this cycle consisted of two successive processes: solar energy drives the thermal decomposition of methanol in a solar receiver-reactor, and the syngas of resulting products is combusted with air, namely, indirect combustion after methanol decomposition. As a result, the net solar-to-electric efficiency of the proposed cycle could be 35% at the collector temperature of 220 °C and the turbine inlet temperature of 1300 °C, and the exergy loss in the indirect combustion of methanol was about 7% points lower than that in the direct combustion of methanol. The promising results obtained in this study indicated that this new solar thermal power cycle could make significant improvements both in the efficient use of the chemical energy of clean synthetic fuel and in the middle-temperature solar thermal energy in a power system.  相似文献   

12.
A.M. Bassily   《Applied Energy》2008,85(12):1141-1162
The main methods for improving the efficiency or power of the combined cycle are: increasing the inlet temperature of the gas turbine (TIT), inlet air-cooling, applying gas reheat, steam or water injection into the gas turbine (GT), and reducing the irreversibility of the heat recovery steam generator (HRSG). In this paper, gas reheat with recuperation was applied to the regular triple-pressure steam-reheat combined cycle (the Regular cycle) by replacing the GT unit with a recuperated gas-reheat GT unit (requires two gas turbines, gas recuperator, and two combustion chambers). The Regular cycle with gas-reheat and gas-recuperation (the Regular Gas Reheat cycle) was modeled including detailed modeling of the combustion and GT cooling processes and a feasible technique to reduce the irreversibility of its HRSG was introduced. The Regular Gas Reheat cycle and the Regular Gas Reheat cycle with reduced-irreversibility HRSG (the Reduced Irreversibility cycle) were compared with the Regular cycle, which is the typical design for a commercial combined cycle. The effects of varying the TIT on the performances of all cycles were presented and discussed. The results indicate that the Reduced Irreversibility cycle is 1.9–2.15 percentage points higher in efficiency and 3.5% higher in the total specific work than the Regular Gas Reheat cycle, which is 3.3–3.6 percentage points higher in efficiency and 22–26% higher in the total specific work than the Regular cycle. The Regular Gas Reheat and Reduced Irreversibility cycles are 1.18 and 3.16 percentage points; respectively, higher in efficiency than the most efficient commercially-available combined cycle at the same value of TIT. Economic analysis was performed and showed that applying gas reheat with recuperation to the Regular cycle could result in an annual saving of 10.2 to 11.2 million US dollars for a 339 MW to 348 MW generating unit using the Regular cycle and that reducing the irreversibility of the HRSG of the Regular Gas Reheat cycle could result in an additional annual saving of 11.8 million US dollars for a 439 MW generating unit using the Regular Gas Reheat cycle.  相似文献   

13.
This study proposes a molten carbonate fuel cell (MCFC)-based hybrid propulsion system for a liquefied hydrogen tanker. This system consists of a molten carbonate fuel cell and a bottoming cycle. Gas turbine and steam turbine systems are considered for recovering heat from fuel cell exhaust gases. The MCFC generates a considerable propulsion power, and the turbomachinery generates the remainder of the power. The hybrid systems are evaluated regarding system efficiency, economic feasibility, and exhaust emissions. The MCFC with a gas turbine has higher system efficiency than that with a steam turbine. The air compressor consumes substantial power and should be mechanically connected to the gas turbine. Although fuel cell-based systems are less economical than other propulsion systems, they may satisfy the environmental regulations. When the ship is at berth, the MCFC systems can be utilized as distributed generation that is connected to the onshore-power grid.  相似文献   

14.
《Energy Conversion and Management》2005,46(13-14):2145-2157
A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established.  相似文献   

15.
An improved very high temperature gas-cooled reactor (VHTR) and copper-chlorine (Cu–Cl) cycle-based nuclear hydrogen production system is proposed and investigated in this paper, in order to reveal the unknown thermo-economic characteristics of the system under variable operating conditions. Energy, exergy and economic analysis method and particle swarm optimization algorithm are used to model and optimize the system, respectively. Parametric analysis of the effects of several key operating parameters on the system performance is conducted, and energy loss, exergy loss, and investment cost distributions of the system are discussed under three typical production modes. Results show that increasing the reactor subsystem pressure ratio can enhance the system's thermo-economic performance, and the total efficiencies and cost of producing compressed hydrogen from nuclear energy are respectively lower and higher than that of generating electricity. When the system operates at the maximum hydrogen production rate of 403.1 mol/s, the system's net electrical power output, thermal efficiency, exergy efficiency, and specific energy cost are found to be 38.77 MW, 39.3%, 41.26%, and 0.0731 $/kW·h, respectively. And when the system's hydrogen production load equals to 0, these values are respectively calculated to be 177.25 MW, 50.64%, 53.29%, and 0.0268 $/kW·h. In addition, more than 90% of the system's total energy losses are caused by condenser and Cu–Cl cycle, and about 50–60% of the system's total exergy destructions occur in VHTR. About 60% and 30% of the system's specific energy cost are respectively caused by the equipment investment and the system operation & maintenance, and the investment costs of VHTR and Cu–Cl plant are the system's main capital investment sources.  相似文献   

16.
Today’s concern regarding limited fossil fuel resources and their contribution to environmental pollution have changed the general trend to utilization of high efficiency power generation facilities like fuel cells. According to annual reducing capital cost of these utilities, their entrance to commercial level is completely expected. Hot exhaust gases of Solid Oxide Fuel Cells (SOFC) are potentially applicable in heat recovery systems. In the present research, a SOFC with the capacity of 215 kW has been combined with a recovery cycle for the sake of simultaneous of electric power, cooling load and domestic hot water demand of a hotel with 4600 m2 area. This case study has been evaluated by energy and exergy analysis regarding exergy loss and second law efficiency in each component. The effect of fuel and air flow rate and also current density as controlling parameters of fuel cell performance have been studied and visual software for energy-exergy analysis and parametric study has been developed. At the end, an economic study of simultaneous energy generation and recovery cycle in comparison with common residential power and energy systems has been done. General results show that based on fuel lower heating value, the maximum efficiency of 83 percent for simultaneous energy generation and heat recovery cycle can be achieved. This efficiency is related to typical climate condition of July in the afternoon, while all the electrical energy, cooling load and 40 percent of hot water demand could be provided by this cycle. About 49 percent of input exergy can be efficiently recovered for energy requirements of building. Generator in absorption chiller and SOFC are the most destructive components of exergy in this system.  相似文献   

17.
燃料电池作为一种高效稳定的分布式清洁能源,其发电技术在电站领域的应用备受关注,而国内燃料电池电站尚在起步阶段,因此对这一领域的研究和实践经验具有重要意义。基于韩国燃气轮机联合循环电站中燃料电池发电项目的实施,介绍了燃料电池的选型,并通过模拟运行确定了最佳余热回收方案。MCFC燃料电池额定发电效率为47%,余热回收后效率提高3.5%。这些经验将对国内未来燃料电池电站的建设起到参考和借鉴意义。  相似文献   

18.
The present paper considers an integrated solar combined cycle system (ISCCS) with an utilization of solar energy for steam methane reforming. The overall efficiency was compared with the efficiency of an integrated solar combined cycle system with the utilization of solar energy for steam generation for a steam turbine cycle. Utilization of solar energy for steam methane reforming gives the increase in an overall efficiency up to 3.5%. If water that used for steam methane reforming will be condensed from the exhaust gases, the overall efficiency of ISCCS with steam methane reforming will increase up to 6.2% and 8.9% for β = 1.0 and β = 2.0, respectively, in comparison with ISCCS where solar energy is utilized for generation of steam in steam turbine cycle. The Sankey diagrams were compiled based on the energy balance. Utilization of solar energy for steam methane reforming increases the share of power of a gas turbine cycle: two-thirds are in a gas turbine cycle, and one-third is in a steam turbine cycle. In parallel, if solar energy is used for steam generation for a steam turbine cycle, than the shares of power from a gas and steam turbine are almost equal.  相似文献   

19.
In this study, the energy and exergy analysis of Al-Hussein power plant in Jordan is presented. The primary objectives of this paper are to analyze the system components separately and to identify and quantify the sites having largest energy and exergy losses. In addition, the effect of varying the reference environment state on this analysis will also be presented. The performance of the plant was estimated by a component-wise modeling and a detailed break-up of energy and exergy losses for the considered plant has been presented. Energy losses mainly occurred in the condenser where 134 MW is lost to the environment while only 13 MW was lost from the boiler system. The percentage ratio of the exergy destruction to the total exergy destruction was found to be maximum in the boiler system (77%) followed by the turbine (13%), and then the forced draft fan condenser (9%). In addition, the calculated thermal efficiency based on the lower heating value of fuel was 26% while the exergy efficiency of the power cycle was 25%. For a moderate change in the reference environment state temperature, no drastic change was noticed in the performance of major components and the main conclusion remained the same; the boiler is the major source of irreversibilities in the power plant. Chemical reaction is the most significant source of exergy destruction in a boiler system which can be reduced by preheating the combustion air and reducing the air–fuel ratio.  相似文献   

20.
In the present work, a dry cooling tower and a solar chimney design are recombined in order to increase the thermal efficiency of a steam Rankine cycle. The rejected heat from the condenser into the dry cooling tower supplemented by the solar radiation gained through its transparent cover are the sources of wind energy generation that is captured by a wind turbine which is located at the beginning of the chimney. In this research a case study for a 250 MW steam power plant of Shahid Rajaee in Iran has been performed. A CFD finite volume code is developed to find the generated wind velocity at the turbine entrance for a 250 m dry cooling tower base diameter and a chimney height of 200 m. Calculations have been iterated for different ambient temperatures and solar irradiances, representing temperature gradient within day length. A range of 360 kW to 3 MW power is obtained for the change in the chimney diameter from 10 to 50 m. The results show a maximum of 0.37 percent increase in the thermal efficiency of a 250 MW fossil fuel power plant unit; which proves this design to be a significant improvement in efficiency of thermal power plants, by capturing the heat that is dissipated from dry cooling towers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号