首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lake Tana is the most important freshwater lake in Ethiopia. Besides pressures on water quality resulting from urbanization and deforestation, the invasion of the exotic water hyacinth (Eichhornia crassipes) poses new threats to the ecosystem. Water hyacinth, endemic to South America, is widely considered as the world’s worst aquatic invasive weed. In 2011, the weed appeared on the northern shores of Lake Tana, expanding in south-eastern direction. The lake area affected by water hyacinth was last estimated in 2015 at 34,500 ha, which equals 16% of the total lake surface. In this research, the benefits of water hyacinth control and eradication for the rural population inhabiting the northern and north-eastern villages bordering Lake Tana, are investigated. In the area, the population largely depends on farming and fishing. An assessment of the total economic benefit of eradication was conducted. The stakeholder-centered approach led to measuring the willingness to contribute in labor and cash terms. Results showed smallholders in the study are willing to contribute over half-a-million euros annually. Costs of management actions can be weighed to the benefits, where further research is needed on the impact on other stakeholder groups. Moreover, wetland management should advance to explore multiple pathways in an integrated approach: water hyacinth control, water hyacinth utilization and sustainable waste water management.  相似文献   

2.
Lake Edward is one of the African Rift Valley lakes draining into the Nile River basin. We conducted three sampling series in Lake Edward in October-November 2016, March-April 2017 and January 2018, in distinct seasonal conditions and in several sites varying by depth and proximity to river outlets, including the Kazinga Channel, which connects the hypertrophic Lake George to Lake Edward. The phytoplankton was examined using microscopy and marker pigment analysis by high performance liquid chromatography (HPLC) and subsequent CHEMTAX processing for estimating abundance of phytoplankton groups. Chlorophyll a concentration in the pelagic and littoral open lake sites barely exceeded 10 µg L−1 whereas, in contrast, in the semi-enclosed Bay of Katwe influenced by the Kazinga Channel chlorophyll a was up to 100 µg L−1. Despite substantial seasonal variations of limnological conditions such as photic and mixed layer depths, cyanoprokaryotes/cyanobacteria represented on average 60% of the phytoplankton biomass, followed by diatoms, which contributed ~25% of chlorophyll a, and by green algae, chrysophytes and cryptophytes. 248 taxa were identified with clear prevalence of cyanobacteria (104 taxa), from the morphological groups of coccal and filamentous species (non-heterocytous and heterocytous). The high proportion of heterocytous cyanobacteria, along with a relatively high particulate organic carbon to nitrogen (C:N) ratio, suggest N limitation as well as light limitation, most pronounced in the pelagic sites. During the rainy season, the most abundant diatoms in the plankton were needle-like Nitzschia. Comparison with previous studies found differences in water transparency, total phosphorus, and phytoplankton composition.  相似文献   

3.
The ongoing threat of introduction of invasive species, including crayfish, to the Laurentian Great Lakes has motivated the development of predictive models to inform where these invaders are likely to establish. Our study is among the first to apply regional freshwater-specific GIS layers to species occurrence data to predict ecosystem suitability to invasions, specifically for the red swamp crayfish, Procambarus clarkii, in the Great Lakes. We combined a database of crayfish species occurrences with the Great Lakes Aquatic Habitat Framework (GLAHF) GIS layers to model habitats suitable to invasion by P. clarkii using boosted regression trees and physiological information for this species. We developed a model of all suitable crayfish habitat across the Great Lakes, then constrained this habitat to areas anticipated to be suitable for P. clarkii based on known physiological limitations of this species. Specifically, P. clarkii requires a minimum temperature of 15?°C for copulation and oviposition, with peak reproduction occurring at temperatures of 20–23?°C. We identified 2% of the Great Lakes as suitable for P. clarkii establishment and 0.88% as optimal for this crayfish, primarily located on the southern coastlines of lakes Michigan and Erie and shallow bays including Saginaw Bay (Lake Huron), Green Bay (Lake Michigan), and Henderson Bay (Lake Ontario). These predictions of where P. clarkii is likely to establish populations can be used to identify areas where education, outreach, compliance, and law enforcement efforts should seek to prevent new introductions of this crayfish and help prioritize locations for surveillance to detect newly established populations.  相似文献   

4.
Sucker species (Catostomidae) are a common benthic invertivore in North American waterbodies yet are understudied in the Laurentian Great Lakes. Despite large biomass and potential competition with more economically valuable fish species, the diets of Great Lakes suckers are poorly described. We explored the gut contents of adult white suckers (Catostomus commersonii) in Lake Michigan and Saginaw Bay, Lake Huron, and longnose suckers (Catostomus catostomus) in Lake Michigan. Chironomidae was a primary prey for white suckers in both lakes, along with Amphipoda in Saginaw Bay. For longnose suckers in Lake Michigan, gut contents were dominated by Amphipoda and Isopoda. Relative to other benthic invertebrate taxa, white suckers positively selected Chironomidae as preferred prey (indexed via Chesson’s alpha). Moreover, the average length of consumed Chironomidae and Amphipoda increased with white sucker length, suggesting preferential size selection of prey as suckers grow. Although dreissenid mussels are overwhelmingly abundant in the benthos of Lake Michigan and Lake Huron, relatively few dreissenid mussels were consumed by either sucker species. Thus, suckers are unlikely to contribute to the control of these invasive invertebrates.  相似文献   

5.
6.
The New Zealand mud snail (Potamopyrgus antipodarum) is an invasive species in Europe, Japan, Australia, and North America. In the western United States it is a species of special concern where population densities in some rivers and streams are very large (∼300,000 per m2) and considerable ecological effects of its presence have been reported. Much less about the effects of this species is known in the Great Lakes, where the snail was found in Lake Ontario and the St. Lawrence River in 1991. Here we report the occurrence of the snail in Lake Erie. Two P. antipodarum were collected in 18 m deep water (sampling range 5–18 m) in Lake Erie off shore of Presque Isle State Park near Erie, Pennsylvania in the summer of 2005 and others were collected off of Sturgeon Point in Lake Erie (sampling range 5–20 m) south of Buffalo, NY and in the central basin of Lake Erie (18 m) in 2006. This finding demonstrates that this species continues to expand its range in the Great Lakes. The range expansion increases the likelihood that it may become established in rivers and streams emptying into the Great Lakes where higher densities and greater ecological damage may result.  相似文献   

7.
Marsh bird habitats are influenced by water levels which may pose challenges for interpreting bird-based indices of wetland health. We determined how much fluctuating water levels and associated changes in emergent vegetation influence the Index of Marsh Bird Community Integrity (IMBCI) using data collected in Great Lakes coastal wetlands by participants in Bird Studies Canada's Great Lakes Marsh Monitoring Program. IMBCI scores for 90 wetlands in Lake Erie and 131 wetlands in Lake Ontario decreased with decreasing water levels due to decreasing number of marsh-dependent species in Lake Erie and perhaps also in Lake Ontario. The average magnitude of the decrease in scores between extremely high and low water periods for wetlands with sufficient data was 15% in Lake Erie where water dropped 0.9 m on average (n = 11 wetlands) and 18% in Lake Ontario where water dropped 0.5 m (n = 7). Scores in Lake Erie increased with increasing Typha due to increasing numbers of marsh-dependent species and decreased with increasing Phragmites due to increasing numbers of generalist species. The opposite was observed in Lake Ontario, perhaps due to denser Typha and sparser Phragmites. Scores were explained by the naturally fluctuating water levels of Lake Erie, which favored Phragmites expansion and the regulated water levels of Lake Ontario which promoted Typha expansion. Scores were influenced by fluctuating water levels and associated changes in emergent vegetation. Inter-annual water level fluctuations should be considered when interpreting any indicator of wetland health that is based on marsh-dependent bird species.  相似文献   

8.
Recent invasion theory has hypothesized that newly established exotic species may initially be free of their native parasites, augmenting their population success. Others have hypothesized that invaders may introduce exotic parasites to native species and/or may become hosts to native parasites in their new habitats. Our study analyzed the parasites of two exotic Eurasian gobies that were detected in the Great Lakes in 1990: the round goby Apollonia melanostoma and the tubenose goby Proterorhinus semilunaris. We compared our results from the central region of their introduced ranges in Lakes Huron, St. Clair, and Erie with other studies in the Great Lakes over the past decade, as well as Eurasian native and nonindigenous habitats. Results showed that goby-specific metazoan parasites were absent in the Great Lakes, and all but one species were represented only as larvae, suggesting that adult parasites presently are poorly-adapted to the new gobies as hosts. Seven parasitic species are known to infest the tubenose goby in the Great Lakes, including our new finding of the acanthocephalan Southwellina hispida, and all are rare. We provide the first findings of four parasite species in the round goby and clarified two others, totaling 22 in the Great Lakes—with most being rare. In contrast, 72 round goby parasites occur in the Black Sea region. Trematodes are the most common parasitic group of the round goby in the Great Lakes, as in their native Black Sea range and Baltic Sea introduction. Holarctic trematode Diplostomum spathaceum larvae, which are one of two widely distributed species shared with Eurasia, were found in round goby eyes from all Great Lakes localities except Lake Huron proper. Our study and others reveal no overall increases in parasitism of the invasive gobies over the past decade after their establishment in the Great Lakes. In conclusion, the parasite “load” on the invasive gobies appears relatively low in comparison with their native habitats, lending support to the “enemy release hypothesis.”  相似文献   

9.
An aerial distance sampling survey of double-crested cormorants (Phalacrocorax auritus) was conducted in the northern region of Lake Huron (North Channel; four largest lakes of Manitoulin Island; South Shore of Manitoulin Is. facing the main body of the lake) to assess the relative distribution, abundance and prey demand by cormorants on inland lake vs. coastal habitat. On a per area basis, the density (approx. 1-2 cormorants ? km− 2) and prey demand (approx. 1.2 kg ha− 1) of cormorants in the four inland lakes matched that of the North Channel. The South Shore had approximately half the density and prey demand as the other two areas. Cormorants on the inland lakes of Manitoulin Island represented 13% early in the season and a high of 33% of the total population for this region of Lake Huron later in the summer. Estimating regional distributions of cormorants within the Great Lakes basin is important because mapped nest colonies and nest counts are not representative of the actual distribution of foraging cormorants during and after the nesting season. There are two general conclusions to emerge from this survey. First, aquatic productivity from both Great Lakes coast and inland lakes contributes to trends in population and distribution of cormorants in the northern region of Lake Huron and perhaps elsewhere. Second, inland aquatic ecosystems are important throughout a season for foraging cormorants from the Great Lakes and may become more important as Great Lake productivity trends downward.  相似文献   

10.
We compared the standing vegetation, seed banks, and substrate conditions in seven pairs of diked and undiked wetlands near the shores of Lake Michigan and Lake Huron, North America. Our analysis tested the null hypothesis that construction of artificial dikes has no effect on the vulnerability of Great Lakes coastal wetlands to non-native and native invasive species. Both the standing vegetation and seed banks in diked wetlands contained significantly more species and individuals of invasive plants. In addition, diked wetlands exhibited significantly higher levels of organic matter and nutrient levels, and significantly higher average pH. Two pervasive non-native invasive species in the Great Lakes region, Lythrum salicaria (purple loosestrife) and Phalaris arundinacea (reed canary grass) were significantly more abundant in diked wetlands. Typha spp. (cattail) also formed a much higher percent vegetation cover in the diked wetlands. Our results support the view that diking of shoreline wetlands modifies natural hydrologic regimes, leading to nutrient-rich aquatic environments that are vulnerable to invasion. The shallower, more variable water levels in non-diked wetlands, on the other hand, appear to favor another undesirable invasive species, Phragmites australis (common reed grass).  相似文献   

11.
Ballast water regulations implemented in the early 1990s appear not to have slowed the rate of new aquatic invasive species (AIS) establishment in the Great Lakes. With more invasive species on the horizon, we examine the question of whether eradication of AIS is a viable management strategy for the Laurentian Great Lakes, and what a coordinated AIS early detection and eradication program would entail. In-lake monitoring would be conducted to assess the effectiveness of regulations aimed at stopping new AIS, and to maximize the likelihood of early detection of new invaders. Monitoring would be focused on detecting the most probable invaders, the most invasion-prone habitats, and the species most conducive to eradication. When a new non-native species is discovered, an eradication assessment would be conducted and used to guide the management response. In light of high uncertainty, management decisions must be robust to a range of impact and control scenarios. Though prevention should continue to be the cornerstone of management efforts, we believe that a coordinated early detection and eradication program is warranted if the Great Lakes management community and stakeholders are serious about reducing undesired impacts stemming from new AIS in the Great Lakes. Development of such a program is an opportunity for the Laurentian Great Lakes resource management community to demonstrate global leadership in invasive species management.  相似文献   

12.
We report dissolved CO2, CH4 and N2O concentrations in two large East African lakes, Edward (surface area 2,325 km2, average depth of 37 m) and George (surface area 273 km2, average depth of 2 m). Lake George showed modest seasonal and spatial variations, and lower partial pressure of CO2 (pCO2) (26 ± 16 ppm, mean ± standard deviation), CH4 (234 ± 208 nmol/L) and N2O saturation levels (%N2O) (80 ± 9 %) than Lake Edward (404 ± 145 ppm, 357 ± 483 nmol/L, 139 ± 222 %). Surface waters in both lakes were over-saturated in CH4, and Lake George was under-saturated in CO2 while Lake Edward was slightly over-saturated in CO2. This difference was related to higher phytoplankton biomass in Lake George than Lake Edward, with average chlorophyll-a concentrations of 177 ± 125 and 18 ± 25 µg/L, respectively. Permanent high cyanobacterial biomass in Lake George led to uniform dissolved CO2, CH4 and N2O concentrations. In surface waters of Lake Edward, spatial variations of pCO2, CH4 and N2O were related to bottom depth, and locally (in particular in Katwe Bay) also related to the inputs of water from Lake George via the Kazinga Channel, a 40-km natural channel connecting the lakes. Short-term mixing events related to storms increased CO2, CH4 and N2O content in surface waters, in particular for CH4 and N2O. This indicates that mixing events in response to storms can create ‘hot moments’ for CH4 and N2O emissions to the atmosphere in tropical lakes, given the weaker vertical density gradients compared to higher latitude systems.  相似文献   

13.
Increasing our understanding of invasive species is important because of the negative impacts they can have on the economies and ecosystems of invaded regions. There is growing interest in how environmental variability (e.g. temperature) and stochastic invasion events (e.g. founder effects) affect the genetic composition of populations of invasive species. Rainbow smelt (Osmerus mordax) are a cold-water, planktivorous fish that spread into the Great Lakes basin in the early 1900s. We performed genetic analyses using microsatellites (N = 10) to investigate the influence stochastic invasion events have had on the genetic composition of invasive rainbow smelt populations across a broad geographic range. Genetic analyses were conducted on rainbow smelt populations (N = 30/population) from Lake Ontario, Lake Michigan, Lake Superior, and four inland lakes in Northern Wisconsin. Populations from the Great Lakes were generally less differentiated than inland populations. Additionally, we found evidence of a significant bottleneck in two inland populations and evidence for two distinct genetic strains of rainbow smelt in Lake Ontario. We also performed genetic analyses using microsatellites to determine if a thermally-induced extreme mortality event had an effect on a population of rainbow smelt and found that there was no measurable genetic effect on the population. Overall, this study provides evidence that the genetic structure and diversity of introduced populations can vary significantly, and are likely influenced by factors such as the frequency and magnitude of introductions. Also the resiliency of an invasive species can be high despite a history of bottlenecks and low genetic diversity.  相似文献   

14.
In the one hundred years since sea lampreys (Petromyzon marinus) were discovered in Lake Erie, the species completed its invasion throughout the Great Lakes basin, contributed to the downfall of the commercial fishing industry, and served as a catalyst for the development of the collaborative fishery management regime that exists today. The sea lamprey invasion simultaneously caused wide-spread devastation while giving rise to a collective realization that the health of the Great Lakes would require ongoing cooperation among governments, scientists, and users of the resource. Since its inception, the effort to control sea lampreys in the Great Lakes has been defined by a “shoot for the moon” mentality. The desperation of communities directly harmed by the sea lamprey invasion, coupled with the determination and unyielding commitment to science by those tasked with addressing the problem, led to the formation of the only reported successful aquatic vertebrate invasive species control program at an ecosystem scale.  相似文献   

15.
It has been suggested that some Great Lakes coastal wetlands may be resistant to invasion by several non-indigenous species including round goby, Neogobius melanostomus. However, there is inconclusive evidence regarding how susceptible exposed fringing coastal wetlands, in particular, are to round goby invasion. Therefore, we quantified round goby catch per unit effort (CPUE) using fyke nets in the Beaver Archipelago of Lake Michigan, and the Les Cheneaux islands and Saginaw Bay regions of Lake Huron. In addition, we examined the influence of body size and maturity on round goby habitat use. Catch per unit effort from fyke nets was highest in the Beaver Archipelago, where wetlands were dominated by small, immature round gobies and open water habitats were dominated by large adults. Fyke net catches within Les Cheneaux sites were similar between habitats and differences in size and maturity were not observed. Conversely, very few round goby were captured in wetlands of Saginaw Bay where CPUE was moderate in open water. This indicates that some exposed fringing wetlands in the Great Lakes, specifically those with high productivity, could have a higher degree of resistance to round goby invasion.  相似文献   

16.
17.
This study evaluates the impact assessment methodologies used by Uganda's Water Hyacinth Control Programme in Lake Victoria, a domestic project with transboundary implications. The Control Programme sought to reduce infestations of water hyacinth (Eichhornia crassipes), an aquatic weed native to South America, through the use of integrated chemical, mechanical and biological methods. The environmental impact assessment for the project was conducted by Aquatics Unlimited, with support from the United States Agency for International Development. Although the case study involves a domestic impact assessment, it raised transboundary concerns. One of the major outcomes of the assessment was recognition of the need for informed involvement of the other riparian countries, Kenya and Tanzania, in the assessment process to ensure a regional effort among all three East African Community Partner States to control water hyacinth and other invasive weeds in Lake Victoria.  相似文献   

18.
Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.  相似文献   

19.
Boundary organizations are institutions that interface between science and policy by facilitating interactions between scientists, policy specialists, and other stakeholders to inform collaborative decision-making. Natural resource management in the Great Lakes Basin is complex and a shared exercise among two federal governments, eight states, two provinces, and over 200 sovereign Tribes, First Nations, and Métis. Many governmental agencies have recognized a need to effectively engage with other jurisdictions in order to bridge the gaps between scientific knowledge and policy decisions. As a result, boundary organizations have emerged to facilitate planning and implementation of collaborative governance frameworks. This commentary highlights how decades of shared governance of the world’s largest freshwater surface water system is augmented and assisted by boundary organizations in addressing two key Great Lakes management issues – Western Lake Erie Basin nutrient levels and Lake Michigan fisheries – which are complex, broad in scale, and pose challenges that must be addressed collaboratively across jurisdictions. While there are many governmental and non-governmental entities that engage in boundary organization-like behaviors, this commentary will be centered on three key institutions: The Great Lakes Executive Committee’s Annex 4 (Nutrients) Subcommittee, the Great Lakes Commission, and the Great Lakes Fishery Commission. We illustrate how each organization procedurally engages stakeholders, especially within state and provincial jurisdictions, to produce information and products that add breadth and capacity to manage the ecosystems of the Great Lakes. We also highlight areas of success and opportunities for improvement in collaborative governance frameworks now and into the future.  相似文献   

20.
Though aquatic ecosystems (and the Laurentian Great Lakes in particular) have faced many stressors over the past century, including fisheries collapses and species invasions, rarely are data available to evaluate the long-term impacts of these stressors on food web structure. Stable isotopes of fish scales from the 1940s to the 2010s in South Bay, Lake Huron were used to quantify trophic position and resource utilization for fishes from offshore (alewife, cisco, lake trout, lake whitefish, rainbow smelt) and nearshore (rock bass, smallmouth bass, white sucker, yellow perch) habitats, providing one of the longest continuous characterizations of food webs in the Laurentian Great Lakes. Mean δ15N and δ13C values for each species were compared across twenty-year time periods. Using directional statistics, no significant community-wide changes were detected between time periods from 1947 to 1999. In contrast, a significant change was detected between 1980-1999 and 2000–2017, with all species showing increased reliance on nearshore resources. The increase in nearshore resource reliance for lake whitefish between these time periods was the greatest in magnitude compared with any other species between any two adjacent time periods. Besides lake whitefish, the increased reliance on nearshore resources was more pronounced for nearshore compared to offshore species. The timing of these shifts coincided with the invasion of dreissenid mussels and round goby, and declines in offshore productivity and prey densities. These results show the unprecedented magnitude of recent food-web change in Lake Huron after 50 years of relative stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号