首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, highly active and stable CeO2, ZrO2, and Zr(1-x)Ce(x)O2-supported Co catalysts were prepared using the co-precipitation method for the high-temperature water gas shift reaction to produce hydrogen from waste-derived synthesis gas. The physicochemical properties of the catalysts were investigated by carrying out Brunauer-Emmet-Teller, X-ray diffraction, CO-chemisorption, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2-temperature-programmed reduction measurements. With an increase in the ZrO2 content, the surface area and reducibility of the catalysts increased, while the interaction between Co and the support and the dispersion of Co deteriorated. The Co–Zr0.4Ce0·6O2 and Co–Zr0.6Ce0·4O2 catalysts showed higher oxygen storage capacity than that of the others because of the distortion of the CeO2 structure due to the substitution of Ce4+ by Zr4+. The Co–Zr0.6Ce0·4O2 catalyst with high reducibility and oxygen storage capacity exhibited the best catalytic performance and stability among all the catalysts investigated in this study.  相似文献   

2.
The nanoscale Co–Mg–O oxide sample (15 wt% in terms of Co3O4) was prepared from the corresponding xerogel synthesized by the modified sol-gel method. The hydrolysis of as-prepared Mg(OCH3)2 was carried out using the aqueous solution of Co(NO3)2 precursor. The CoOx nanocrystallites of about 10–20 nm in size were shown to be uniformly distributed within the MgO matrix. The reduction of Co–Mg–O in H2 flow was found to proceed in two separate stages within the temperature ranges of 200–350 °C and 350–600 °C. The prepared binary Co–Mg–O system was demonstrated to possess completely reproducible reduction behavior in the consecutive reduction/reoxidation cycles. The phase composition of the sample exposed to both the reducing and oxidative environment was followed by an in situ X-ray diffraction analysis performed at temperatures of 25, 300, 500 and 700 °C. The determined lattice parameters for MgO (a = 4.219 Å) and Co3O4 (a = 8.110 Å) were found to be slightly increased as compared with the values from Powder Diffraction File, so that the formation of joint non-stoichiometric (Mg1-xCox)O and (Co3-xMgx)O4 phases was suggested. The strong chemical interaction of cobalt oxide with MgO matrix was also evidenced by the data of a diffuse reflectance UV–vis spectroscopy.  相似文献   

3.
The poor chemical stability and unsatisfactory electrical conductivity of the BaCeO3-based protonic conductors may be improved by doping, by the creation of solid solutions (e.g. with BaZrO3) or by the formation of composite materials. In this work, the latter approach was used and the BaCe0·9Y0·1O3 – (Ba–Ce–Y–Si–P–O) composites were synthesized and investigated. The BaCe0·9Y0·1O3 host material and the modifier phase (6 wt%) powders were mixed by mechanical homogenization. The sintering of compacted powders was done using Spark Plasma Sintering (SPS) and the free-sintering (FS) methods, followed by the post-annealing of some samples. The influence of the sintering method and the presence of the modifier phase on the phase composition, crystallographic structure, microstructure and electrical properties were investigated. A strong influence of the sintering method on these properties was found. Also, the introduction of the modifier phase leads to considerable changes in phase composition, which are dependent on the sintering method and the post-annealing treatment. The electrical properties, determined in different gas atmospheres using the Electrochemical Impedance Spectroscopy (EIS) technique, were correlated with the phase composition and microstructure changes. The minor increase of electrical conductivity due to the introduction of the modifier phase was observed only in the case of SPS sintered samples. A detailed discussion of the observed correlations including the possible chemical composition and structural changes, mutual reactivity, amorphization, the removal of residual stress and the detailed analysis of the EIS results was done. The formation of BaCe0·9Y0·1O3 – (Ba–Ce–Y–Si–P–O) composite materials using the Spark Plasma Sintering method was found to be a promising approach towards ceramic protonic conductors with improved properties.  相似文献   

4.
Thermochemical water splitting using perovskite oxides as redox materials is one of the important way to use solar energy to produce green hydrogen. Thus, it is hence important to discover new materials that can be used for this purpose. In this regard, we focused on Al-substituted La0.4Sr0.6Mn1-xAlxO3 (x = 0.4, 0.5 and 0.6) perovskite oxides, namely as La0.4Sr0.6Mn0.6Al0.4 (LSMA4664), La0.4Sr0.6Mn0.5Al0.5 (LSMA4655), and La0.4Sr0.6Mn0.4Al0.6 (LSMA4646) which have been successfully synthesized. Herein, synthesized LSMA4664, LSMA4655, and LSMA4646 were subjected to three consecutive thermochemical cycles in order to determine their oxygen capacity, hydrogen capacity, re-oxidation capability and structural stability following three cycles. Thermochemical cycles were carried out at 1400 °C for reduction and 800 °C for the oxidation reaction. LSMA4646 exhibited the highest O2 production capacity with 275 μmol/g among the other perovskites employed in the study. Moreover, LSMA4646 has also the highest H2 production, 144 μmol/g, with 90% of re-oxidation capability by the end of three thermochemical water splitting cycles. On the other hand, LSMA4664 has the lowest H2 production and only kept approximately one-third of its hydrogen production capacity by the end of cycles. Thus, the current study provides insight that the increase in the Al-substitution enhances both oxygen and hydrogen production capacity. Besides, increasing the Al amount increases the structural stability during the redox reactions, the re-oxidation capability was also increased from 38% to 89% after thermochemical cycles.  相似文献   

5.
Mixed transition metal oxides have garnered widespread interest as alternative electrocatalysts for the oxygen and hydrogen generation reactions; however, they tend to require extended synthetic routes, in addition to possessing limited electrocatalytic activities and stabilities. Herein, we report the observation of a synergistic effect between the non-precious metal oxides Mn3O4 and Co3O4 with CuO and NiO, wherein the resulting composites exhibit promising properties as catalysts for the alkaline water electrolysis process. The activities of these composites in both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) were improved compared to their counterparts, and the dynamic potentials of these processes were reduced. Importantly, low overpotentials of 202 and 380 mV were found for the CuO–Mn3O4 composite catalysts for the OER and the HER at 10 mA/cm2, respectively. In addition, electrochemical impedance spectroscopy measurements showed a reduced impedance response for the composites, which was dominated by the relaxation of the intermediate frequency associated with the adsorption of the intermediate. Furthermore, the superior catalytic activities of the composites were attributed to their structural properties, high electroactive surface areas, fast electron transport kinetics, and good chemo-electrical bonding between Mn3O4 and CuO. Importantly, merging with a marketable silicon-based solar cells, the accumulated PV-EC water splitting device obtains greater hydrogen production under stimulated solar light irradiation. This work offers a typical demonstration and respected strategies for practical large-scale solar H2 production via an economical PV-EC technology.  相似文献   

6.
Syngas production from the dry reforming of methane is now the most extensively utilized method for removing massive amounts of greenhouse emissions. Effective solutions towards the utilization of greenhouse gases such as CO2 and CH4 are scarce, except for power generation in the energy sector, which is a major source of CO2. Herein, dry reforming of methane was experimented for the first time using an effective catalytic system composed of 5% Ni fibrous silica-alumina (FSA) that was successfully fabricated using a hydrothermal method. The characterization results from XRD, FESEM mapping, TEM, BET,XRF, FTIR, H2-TPR, TGA/DTA, and Raman spectra demonstrated that Ni/FSA is composed of orderly Ni dispersion, small particles of Ni, robust basic sites, and high oxygen vacancies which enhanced the catalytic efficiency. The synthesized Ni/FSA also reduced coke formation and had long-term stability with no evidence of inactivation during and after the catalytic cycles. The superior activity of Ni/FSA was manifested in the high conversion rates of CH4 and CO2 at 97% and 92% respectively, with a H2:CO ratio of ≈ 1. The stability of Ni/FSA was also sustained over 30 h of operation at 800 °C. The findings of the Raman, TEM, and TGA/DTA tests revealed that the spent Ni/FSA catalysts did not exhibit graphitic carbon or metal sintering in significant amounts when compared to commercial Ni–Si/Al catalysts.  相似文献   

7.
In this work, a sol-gel Ni–Mo2C–Al2O3 catalyst is employed for the first time in the glycerol steam reforming for syngas production. Catalyst stability and activity are investigated in the temperature range of 550 °C–700 °C and time on stream up to 30 h. As reaction temperature increases, from 550 °C to 700 °C, H2 yield boosts from 22% to 60%. The stability test, carried out at milder conditions (600 °C and Gas-Hourly Space-Velocity (GHSV) of 50,000 mL h−1.gcat−1), shows high catalyst stability, up to 30 h, with final conversion, H2 yield, and H2/CO ratio of 95%, 53% and 1.95, respectively. Both virgin and spent catalysts have been characterized by a multitude of techniques, e.g., Atomic-Absorption spectroscopy, Raman spectroscopy, N2-adsorption-desorption, and Transmission Electron Microscopy (TEM), among others. Regarding the spent catalysts, carbon deposits’ morphology becomes more graphitic as the reaction temperature increases, and the total coke formation is mitigated by increasing reaction temperature and lowering GHSV.  相似文献   

8.
Although utilization of diverse classes of metal oxides as hydrogen storage materials has been reported, but there is still a major need to introduce efficient materials. Herein, mesoporous Zn2V2O7 nanostructures were produced by a new sonochemical method using hydrazine, zinc nitrate, and ammonium vanadate as the starting reagents and then annealed at 700 °C. Prior to annealing, Zn3V3O8 was produced in the presence of ultrasonic waves, whereas in the absence of ultrasonic waves, Zn2(VO4)2 was the major product. In fact, ultrasonic waves interfered with the reaction mechanism and reduced V5+ to V4+ and V3+. Because of the proper composition and structure of these nanostructures, they were used for electrochemical storage of hydrogen. Storage of over 2899 mAh/g after 20 cycles by flower-like nanostructures revealed their high capability. The results also showed that morphology affects efficiency such that three-dimensional spherical nanostructures had a storage capacity of 2247 mAh/g after 20 cycles.  相似文献   

9.
The metal organic frameworks (MOFs) supported Pd catalysts for H2 generation from formic acid (FA) were synthesized in this work, via a facile excessive impregnation-low temperature reduction approach. Among the synthetic catalysts, 10% Pd/MOF-Cr (18) displayed a remarkable performance for catalyzing FA dehydrogenation in additive-free aqueous solution, and the corresponding TOFmid achieved 537.8 h?1 at 323 K. Furthermore, the bimetallic Ni–Pd alloy catalysts were prepared by the introduction of Ni in the subsequent work. Fortunately, 10% Ni0.4Pd0.6/MOF-Cr was found to be a highly active and fairly durable catalyst, exhibiting a TOFmid as high as 737.9 h?1 at 323 K with almost 100% XFA (final) and SH2, and remained 94% of its original activity in the third cyclic catalysis. Meanwhile, Ni was discovered to be indispensable in increasing the electron density of Pd, downsizing the immobilized metal particles and inhibiting the agglomeration of the loaded nanoparticles.  相似文献   

10.
Silicon-based nanosheets (SNS) were synthesised via a mild (60 °C) and time-saving (8 h) modified topochemical method. Then, Cu3(BTC)2 and SNS@Cu3(BTC)2 were successfully synthesised by microwave irradiation, and their characteristics and hydrogen storage performance were analysed by multiple techniques. The accordion-like SNS exhibited void spaces, a unique low buckled structure, and ultrathin, almost transparent, loosely stacked layers with a high specific surface area (362 m2/g). After in-situ synthesis with Cu3(BTC)2, the SNS compound achieved a high specific surface area (1526 m2/g), outstanding hydrogen storage performance (5.6 wt%), and a desirable hydrogen diffusion coefficient (10?7). Thus, SNS doping improved the hydrogen storage performance of Cu3(BTC)2 by 64% through electron transfer reactions with Cu enabled by the unique composite nanostructure of SNS@Cu3(BTC)2. This study presents a promising method of synthesising SNS and porous composite materials for hydrogen storage.  相似文献   

11.
The catalytic steam reforming of acetic acid over both Ni/ and Co/Ce0·75Zr0·25O2 (CZO) catalysts in the temperature range of 450–650 °C and steam-to-carbon molar ratios of 3–9 was studied. It was found that the complete acetic acid conversion was achieved for all the conditions investigated. Nevertheless, the C–C bond cleavage conversion was attained less than the acetic acid conversion at a given condition due to carbon deposition on the catalyst. However, hydrogen yield was obtained in the same trend as C–C bond cleavage conversion as well. The results revealed that the CZO as an active support prefers to promote the ketonization reaction to the C-C bond cleavage reaction at a lower temperature, and vice versa at a higher temperature. The Ni/CZO catalyst exhibits higher C–C bond cleavage conversion than the Co/CZO catalyst particularly at 650 °C whereas the Co/CZO catalyst is more active for ketonization reaction at low temperatures. However, as an increase in reaction temperature, the Co/CZO catalyst promotes ketonization reaction more pronouncedly toward aldol-condensation reaction thus giving rise to the carbon deposition. The results deduced from the effect of space velocity on the activity and product distribution suggested that the steam reforming of acetic acid over Ni/CZO catalyst is dominated by decomposition of acetic acid, while that of Co/CZO catalyst by ketonization reaction.  相似文献   

12.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

13.
Ammonia borane (NH3BH3, AB) has been considered as one of the most attractive candidates for chemical hydrogen-storage materials and chemical hydrogen generation materials. Development of low-cost and high-performance catalysts for hydrogen generation from AB is highly desirable, which is still a huge challenge. Hollow sphere CuCo2O4 promotes the catalytic hydrolysis of AB due to its unique hollow sphere shape and the synergistic effect of Co and Cu elements. In this study, a heterogeneous structured catalyst containing NiO and CuCo2O4 was developed by a simple and low-cost method in order to improve the catalytic performance of CuCo2O4. Initially, CuCo2O4 with hollow sphere structure was synthesized by hydrothermal method, and then NiO were deposited onto CuCo2O4 by impregnation-calcination method to form a heterogeneous structure. The CuCo2O4–NiO catalyst showed good catalytic activity for the hydrolysis of AB. The catalytic performance of CuCo2O4–NiO was then optimised by controlling the concentration of the impregnated salt solution, and the optimised catalytic performance was 1.42 times that of pure CuCo2O4 with a HER value of 870 mLH2gcat−1min−1. This low-cost CuCo2O4–NiO obtained by impregnation-calcination method is valuable for catalytic hydrogen production from AB.  相似文献   

14.
《能源学会志》2020,93(6):2488-2496
The thermocatalytic alteration of CH4 into highly pure hydrogen and filaments of carbon was investigated on a series of Ni-catalysts with various contents (25, 40, 55, and 70 wt%) supported mesoporous spherical SiO2. The silica with ordered structure and high specific surface area (1136 m2/g) was synthesized using the Stöber technique with TEOS as a silica precursor and CTAB as the template in a simple synthesis system of aqueous-phase. This technique led to the preparation of mesoporous spherical silica. The prepared samples were characterized using BET, TPR, XRD, TPO, and SEM analyses. The prepared catalysts with different nickel loading showed the BET surface area ranging from 225.0 to 725.7 m2/g. These results indicated that an increase in nickel content decreases the surface area and leads to a subsequent collapse of a pore structure. SEM analysis confirmed a spherical nanostructure of catalysts and revealed that with the increase in loading of Ni, the particle size enlarged, because of the agglomeration of the particles. The results implied that the high methane conversion of 54% obtained over the 55 wt% Ni/SiO2 at 575 °C and this sample had higher stability at lower reaction temperature than the other prepared catalysts, slowly deactivation was observed for this catalyst at a period of 300 min of time on stream.  相似文献   

15.
TiO2 quantum dots-sensitized Cu2S (Cu2S/TiO2) nanocomposites with varying concentration of TiO2 QDs are synthesized via a facile two-stage hydrothermal-wet impregnation method. X-ray diffraction analysis confirms the formation of Cu2S and TiO2with chalcocite and anatase phases, respectively. The observed shoulder-like absorption peaks indicate the UV–visible light-driven properties of the composite. Morphological analysis reveals that the fabricated Cu2S/TiO2 composite consists of Cu2S with a nano rod-like shape (average length and width of ~856 and ~213 nm, respectively) and nanosheets-like structures (average length and width of ~283 and ~289 nm, respectively), whereas the TiO2 is formed as quantum dots with a size range of 8.2 ± 0.4 nm. Chemical state analysis shows the presence of Cu+, S2?, Ni2+, and O2? in the nanocomposite. The H2 evolution rate over the optimized photocatalyst is found to be ~45.6 mmol h?1g?1cat under simulated solar irradiation, which is around 5 and 2.4-fold higher than that of the pristine TiO2 and Cu2S, respectively. Continuous H2 production for 30 h is achieved during time-on-stream experiments, demonstrating the excellent stability and durability of the Cu2S/TiO2 photocatalyst for large-scale applications.  相似文献   

16.
Ni/red mud (RM) catalysts were prepared by wet impregnation and used in the catalytic steam gasification of bamboo sawdust (BS) to produce hydrogen-rich syngas. The system was optimized in terms of the amount of added nickel (10%), reaction temperature (800 °C), and catalyst placement (separately behind the BS). The maximum H2 yield was 17.3% higher than that using pure RM catalyst and 43.8% higher than that of BS gasification alone, and the H2/CO ratio in the syngas reached 7.82. This Ni/RM catalyst also retained good activity after six cycles in a double-stage fixed bed reactor. Analysis using X-ray fluorescence, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, and other methods revealed that the interaction of Ni, Fe, and Mg in Ni/RM produced bimetallic compounds containing active sites, such as NiFe2O4, MgNiO2, and NiO. This explains the good catalytic performance in the tar conversion during the gasification process.  相似文献   

17.
This study aimed to evaluate the effect of the organic loading rate (OLR) (60, 90, and 120 g Chemical Oxygen Demand (COD). L?1. d?1) on hydrogen production from cheese whey and glycerol fermentation as cosubstrates (50% cheese whey and 50% glycerol on a COD basis) in a thermophilic fluidized bed reactor (55 °C). The increase in the OLR to 90 gCOD.L?1. d?1 favored the hydrogen production rate (HPR) (3.9 L H2. L?1. d?1) and hydrogen yield (HY) (1.7 mmol H2. gCOD?1app) concomitant with the production of butyric and acetic acids. Employing 16S rRNA gene sequencing, the highest hydrogen production was related to the detection of Thermoanaerobacterium (34.9%), Pseudomonas (14.5%), and Clostridium (4.7%). Conversely, at 120 gCOD.L?1. d?1, HPR and HY decreased to 2.5 L H2. L?1. d?1 and 0.8 mmol H2. gCOD?1app, respectively, due to lactic acid production that was related to the genera Thermoanaerobacterium (50.91%) and Tumebacillus (23.56%). Cofermentation favored hydrogen production at higher OLRs than cheese whey single fermentation.  相似文献   

18.
The performance of metal hydrides based simultaneous cooling and heat transformation system (MHCHT) using a combination of La0.9Ce0.1Ni5–MmNi4.4Al0.6–MmNi3.7Co0.7Mn0.3Al0.3 hydrides is evaluated. The MHCHT is thermodynamically analysed using statically and dynamically measured PCIs and thermodynamic properties. In addition, a set of governing equations is solved in order to study the heat and hydrogen transfer between the reaction beds. The experimental PCI measurement data are compared with the numerical results and a reasonably good agreement is observed between them. From the results, the slope and hysteresis factors are determined for further thermal analyses. It is observed that the performance parameters i.e. cooling capacity, heat transformation capacity and coefficient of performance (COP) of MHCHT are significantly decreased by 42.4%, 26.7% and 19.1% respectively when dynamic property data are considered compared to static property data. In addition, the thermodynamic cycle is analysed by considering the variation in pressure during hydrogen transfer process between the metal hydride beds.  相似文献   

19.
Tar and H2S are obstacles to the efficient production of H2 from unused industrial gases and biomass gasification gases. Robust catalysts against tar and H2S are required to produce H2 from such resources. Herein, a stable steam reforming reaction is demonstrated over pure CeO2 under reaction conditions consisting of ~2 vol% 1-methylnaphthalene and ~1000 ppm H2S. The presence of H2S significantly suppressed Ni/MgO/Al2O3 activity and increased carbon deposition, regardless of the steam to carbon (S/C) ratio. In contrast, the promotion or suppression of CeO2 activity in the presence of H2S was dependent on the S/C ratio. At S/C = 1.2, H2S deactivated the CeO2 catalyst and increased carbon deposition. Conversely, H2S promoted the reforming reaction and decreased carbon deposition on CeO2 at S/C ≥ 2.0. The results of this study clarify that pure CeO2 exhibits outstanding and stable activity for the steam reforming reaction of 1-methylnaphthalene in the presence of H2S by controlling the S/C of the inlet gas.  相似文献   

20.
It is important to consider the synergy of heterostructures to improve the slow kinetics of water dissociation in the alkaline hydrogen evolution reaction (HER). Herein, we report a simple method to design a heterohierarchical CoMo catalyst. The CoMo catalyst was prepared by simple one-pot electrodeposition on carbon paper (CP). The CoMo/CP catalyst was optimized for the alkaline HER by controlling the electrodeposition bath conditions, potential, and time. The optimized catalyst shows the heterohierarchical structure containing the electrically conductive metallic Co in the bulk and Mo-incorporated Co containing Mo4+ at the surface. It exhibited a lower HER overpotential of 0.11 V at ?20 mA/cm2 compared to those of the others owing to the synergetic effect of the between the Co and Mo incorporated Co. The results highlight the advantages of the simple method developed herein for the design of heterohierarchical catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号