首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the palladium (Pd)-nickel (Ni) alloy films' ability to detect hydrogen (H2) at various Ni concentrations. The co-sputtering method was used to make the Pd–Ni alloy sensors. The response of the Pd–Ni alloys sensor reduced linearly as Ni8% concentration was added to Pd, and the resistance of the Pd–Ni alloys was reversible upon exposure to H2 gas with absorption and desorption characteristics. The experimental findings demonstrated that the Pd–Ni alloy sensor response time of 11 s was much faster than that of pure Pd, with great selectivity and stability for a period of 90 days.  相似文献   

2.
The widespread demand for clean energy stimulates great interest to hydrogen energy with high energy density and conversion efficiency. Separation technologies by membranes are increasingly applied for hydrogen separation because of its excellent performance and low consumption. In this work, density functional theory simulations is used to study hydrogen separation of Pd–Au–Ag membrane, and the performance of Pd–Au alloy is also compared and discussed. The results indicate that Pd–Au alloy shows superior selectivity to H2 gas over CO, N2, CH4, CO2 and H2S gases, which is in line with experimental results. In particular, the separation selectivity of Pd–Au–Ag to H2 is significantly greater than those for Pd–Au alloy and several currently reported materials. Moreover, the permeability of H2 in Pd–Au–Ag exceeds the limits for industrial production at deferent temperatures. Our calculations demonstrate that Pd–Au–Ag alloy present excellent performance as a promising membrane for hydrogen separation.  相似文献   

3.
This paper reviews both static and dynamic characteristics of a planar-type Pd–GaN metal–semiconductor–metal (MSM) hydrogen sensor. The sensing mechanism of a metal–semiconductor (MS) hydrogen sensor was firstly reviewed to realize the sensing mechanism of the proposed sensor. Symmetrically bi-directional current–voltage characteristics associated with our sensor were indicative of easily integrating with other electrical/optical devices. In addition to the sensing current, the sensing voltage was also used as detecting signals in this work. With regard to sensing currents (sensing voltages), the proposed sensor was biased at a constant voltage (current) in a wide range of hydrogen concentration from 2.13 to 10,100 ppm H2/N2. Experimental results reveal that the proposed sensor exhibits effective barrier height variations (sensing responses) of 134 (173) and 20 mV (1) at 10,100 and 2.13 ppm H2/N2, respectively. A sensing voltage variation as large as 18 V was obtained at 10,100 ppm H2/N2, which is the highest value ever reported. If an accepted sensing voltage variation is larger than 3 (5) V, the detecting limit is 49.1 (98.9) ppm. Moreover, voltage transient response and current transient response to various hydrogen-containing gases were experimentally studied. The new finding is that the former response time is shorter than the latter one. Other dynamic measurements by switching voltage polarity and/or continuously changing hydrogen concentration were addressed, showing the proposed sensor is a good candidate for commonly used MS sensors.  相似文献   

4.
Metallic supports with sufficient surface quality to achieve highly selective thin Pd–Ag membranes require specific pre-treatments, are not readily available on the market and are generally very expensive. To reduce costs, rough and large media grade Hastelloy X filters have been acquired and pre-treated via polishing and chemical etching. The loss in gas permeance given by the polishing treatment proved fully recovered after chemical etching. A method to fill the large pores of the filters via aspiration of α-Al2O3 water-powder suspension has been applied and characterized via imaging of the filled pores, inferential statistics, and capillary flow porometry measurements. The most suitable filler particle size for pore size distribution reduction has been identified as 18 μm, while a 5 μm filler proved optimal for further pore morphology improvement. The wide pore size distribution of the filters has thus been reduced up to 200 nm by filling with α-Al2O3 particles of decreasing size, similarly to the ceramic supports used for thin Pd–Ag membranes deposition. A boehmite based interdiffusion barrier has been deposited, achieving further surface roughness reduction. A highly H2 selective membrane has been obtained via simultaneous Pd–Ag plating on the pre-treated filter.  相似文献   

5.
PdAg model films and real composite membranes were prepared by sequential electroless deposition on top of porous stainless steel supports. Their surface properties were investigated by X-ray photoelectron spectroscopy (XPS), Angle resolved XPS and sputtering depth profile. It was shown that the surface of the alloy was strongly enriched in silver after the annealing treatment up to 500 °C on hydrogen stream. A relationship between the Ag 3d5/2 core-level binding energy shift and the silver surface composition was observed from the XPS data obtained with the model samples. The surface composition of real membranes after both hydrogen permeation and reaction experiments showed silver enrichment, in agreement with the data obtained from the model sample.  相似文献   

6.
Mg-based materials are very promising candidates for hydrogen storage. In this paper, the graphene supported Ni was introduced to the Mg90Al10 system by hydrogenation synthesis (HS) and mechanical milling (MM). The 80 wt%Ni@Gn catalyst was synthesized by a facile chemical reduction method. The microstructures of the catalyst and composite show that Ni nanoparticles are well supported on the surface of graphene and they are dispersed uniformly on the surface of MgH2 particles. After heating to 450 °C and holding at 340 °C for 2 h subsequently under 2.0 MPa hydrogen pressure, all the samples are almost completely hydrogenated. According to the temperature programmed desorption test, the Mg90Al10-8(80 wt%Ni@Gn) composite could desorb 5.85 wt% H2 which comes up to 96% of the theoretical hydrogen storage capacity. Moreover, it shows the optimal hydriding/dehydriding performance, absorbing 5.11 wt% hydrogen within 400 s at 523 K, and desorbing 5.81 wt% hydrogen within 1800 s at 573 K.  相似文献   

7.
To detect hydrogen leakage as soon as possible, researchers try their best to improve the sensitivity and response speed of the hydrogen sensor. However, the sensitivity and response speed are two contradictive parameters. It is hard to improve them simultaneously. The transmission optical fiber sensor with multi-layer films is the only structure which can increase the response speed and enhance sensibility simultaneously. However, because of its special structure, the output signal of the sensor often drifts. This paper designed an in-situ observation system to study the reason why the sensor drifts. The in-situ observation system found a periodic oscillation pattern for the transmission spectrum which depends on the wavelength of the light source. The transmission spectrum patterns of the sensor with multi-layer Palladium–Yttrium (Pd–Y) alloy films under different hydrogen concentrations were analyzed. The source of drift error induced by the wavelength shift of the light source was confirmed. By using a moving average algorithm, the error characteristics of the sensor were analyzed and simulated. The results show that the increased sweep width of the laser can effectively restrain the signal drift of sensors. Particularly, when the sweep width of the laser just is the integer multiples of the period of the transmission spectrum, the suppression of the oscillation was optimal. A sensor with a wavelength-swept laser was implemented. For the sweep width of 1.1 nm, the maximum wavelength sensitivity of the sensor is only 0.046 mv/pm. The wavelength drift error is significantly less than that without signal processing. The sensor has achieved a detection limit of 0.05% which is identical to the sensor with the frequency-stabilized laser. Finally, a design principle was proposed to optimize the light source parameters and structure parameters of the probe for the high stability of the optical fiber hydrogen sensor.  相似文献   

8.
The magnetic susceptibility and the pressure-composition isotherm were measured simultaneously for Pd–Rh–H and Pd–Ag–H systems in order to clarify the effect of Rh or Ag substitution on the hydrogen uptake from viewpoint of the electronic band structure. The magnetic susceptibility of all Pd binary alloys prepared decreased monotonically with increasing hydrogen content. At high hydrogen contents, the magnetic susceptibility became approximately zero for Pd–Rh–H and Pd–Ag–H system, and the hydrogen content at which the magnetic susceptibility gives zero corresponded with the terminal of the plateau region in the isotherm curve. The results indicated that the magnetic susceptibility of hydride phase was almost zero for all Pd binary alloys. On the basis of the band structure of Pd metal, we concluded that atom substitution only affected shift of the energy at Fermi level, and the amount of the hydrogen uptake was dominated by the number of unoccupied d-band in the alloys.  相似文献   

9.
Increasing world energy demands and crises led to alternative energy production methods, such as fuel cells using hydrogen gas which is the half electrochemical reaction of water splitting process. Herein, we synthesize polyvinylpyrrolidone coated Pd, Co and PdxCo1-x (x: 0.5, 0.12, 0.23, 0.49, 0.55, 0.62) metallic and bimetallic nanoparticles (NPs) via polyol process alternative to Pt-based catalysts for hydrogen evolution reaction (HER). Detailed structural analyses of Pd, Co and PdxCo1-x NPs revealed that fcc-Pd, fcc/hcp-Co and fcc-PdCo NPs crystal structures, and the lattice parameters were calculated as 3.5358 Å for Co NPs and 3.9777 Å for Pd NPs. The average size confirmed below 9 nm via TEM imaging and XPS data confirmed the formation of a bimetallic PdCo structure. Although Pd catalyst is mostly responsible for HER process, Pd62Co38 catalysts reduced the onset potential to about 197 mV and provided greater current density. Although Ea values were slightly higher against the Pt/C (20 wt %) benchmark which is reported as 16 kJ mol−1, PdCo NPs provided considerably reduced activation energy (Ea) values compared to Pd/C catalyst of 31 kJ mol−1. The best onset potential was recorded for Pd62Co38 catalysts for HER activity which is 16 mV higher compared to commercially available Pt/C catalyst.  相似文献   

10.
Pd–Cu alloys have been investigated as promising candidates for hydrogen separation membranes. Surface segregation influences the long-term performance of these membranes since their catalytic effect is mainly controlled by the surface composition. In the present research, surface segregation of Pd-40 at.% Cu alloy in vacuum and various gas atmospheres (H2, CO and CO2) was investigated with both XPS and LEISS probing different depths below the surface. Adsorption of H2 and CO on the surface has a significant impact and the surface segregation trend can be reversed as compared to segregation in vacuum, however, CO2 has almost no influence on the segregation behaviour. A thermodynamic model is also presented to explain these phenomena and to understand surface segregation behaviour of binary alloys in various gas atmospheres. The results can be considered as basic guidelines to design novel alloys for hydrogen separation membranes and predict their long-term performance under actual working conditions.  相似文献   

11.
Thin film samples of Mg80Ti20 (Mg–Ti) and Mg, both with and without H, were investigated in a series of X-ray photoelectron spectroscopy (XPS) measurements. The samples were covered with a thin protective layer of Pd, which was removed by Ar+ sputtering prior to data acquisition. This sputtering was found to reduce both oxides and hydrides. A distinct, previously unknown peak was revealed in the Mg KLL spectrum of the Mg–Ti–H samples, located between the metallic and the MgO component. This peak was attributed to trapping of H in very stable interstitial sites at the interface between Ti nano-clusters and the Mg matrix, based on earlier density functional theory calculations and supported by so-called Bader analysis. The latter was performed in order to study the theoretical charge distribution between Mg, Ti and H, establishing a link between the position of the previously unknown peak and the effect of H on the valence state of Mg. The composition of the samples was studied both by energy dispersive spectroscopy using transmission electron microscopy and by quantitative XPS analysis. Final state Auger parameters (AP) were obtained for metallic Mg, MgO and MgH2, as well as Mg affected by trapped H. No difference between the AP values from the metallic components was found between the Mg and the Mg–Ti samples. The AP values for MgO and MgH2 were consistent with previous reports in literature; several eV lower than the metallic value. Mg in the vicinity of trapped hydrogen, on the other hand, showed a more metallic character, with its corresponding AP value less than 1 eV below the AP for pure Mg.  相似文献   

12.
The surface adsorption effect of CO on the hydrogen permeability of a 12.5 micron-thick Pd77Ag23 membrane has been evaluated quantitatively under experimental conditions close to the operating conditions of the highly-efficient membrane reformer (MRF) system developed by Tokyo Gas. The permeability of the membrane was measured in the conditions of CO concentration between 1 and 5 vol.% at a temperature and pressure of up to 500 °C and 0.6 MPa, respectively. High feed flow rates and a microchannel module configuration were applied in the flux measurements to ensure that the results are obtained with limited influence of concentration polarization adjacent to the membrane surface and hydrogen depletion along the microchannel length. While the CO inhibition effect was close to negligible at 500 °C, it was significant at lower temperatures. At a feed pressure of 0.2 MPa, the CO inhibition effect was only 0.2% at a CO concentration of 1 vol.% and the effect was 3.6% at a CO concentration of 5 vol.% at 500 °C. The CO inhibition effect were 3.4% for 1 vol.% CO and 14.1% for 5 vol.% CO at 400 °C. Measurements were also carried out at a high feed pressure of 0.6 MPa to evaluate the pressure dependence of the CO inhibition effect. The CO inhibition effect decreased to 0.7% at a CO feed concentration of 5 vol.% at 500 °C. Lower CO inhibition effect were also observed at 450 and 400 °C compared to the data obtained with the feed pressure of 0.2 MPa, while the inhibition levels were almost the same at 350 °C. Though the CO inhibition effect is larger at a lower feed pressure of 0.2 MPa, the effect was only 0.2% at 1 vol.% CO at 500 °C, which is close to the operating conditions of the MRF system. This study quantitatively revealed that the CO inhibition effect on hydrogen flux is extremely small when the membrane is operated at temperatures equal to or higher than 500 °C, even for state-of-the-art thin membranes. The performance of the Tokyo Gas MRF seems thus mainly limited by concentration polarization effects.  相似文献   

13.
The ethanol steam reforming reaction carried out in a Pd-based tubular membrane reactor has been modelled via a finite element code. The model considers the membrane tube divided into finite volume elements where the mass balances for both lumen and shell sides are carried out accordingly to the reaction and permeation kinetics. Especially, a simplified “power law” has been applied for the reaction kinetics: the comparison with experimental data obtained by using three different kinds of catalyst (Ru, Pt and Ni based) permitted defining the coefficients of the kinetics expression as well as to validate the model. Based on the Damkohler–Peclet analysis, the optimization of the membrane reformer has been also approached.  相似文献   

14.
Thin Pd–Ag layers have been successfully deposited on ceramic supports with controlled surface characteristics. The need for less fragile membranes and ease of sealing and connection leads to the study of metallic supports for thin Pd-based membrane development. Metallic supported membranes are prone to intermetallic diffusion issues so an interdiffusion barrier must be introduced. However, metallic supports with sufficient surface quality for direct membrane deposition are expensive and not readily available in the market. It is thus important to study how to improve surface roughness of commercially available rough metallic filters, in order to allow deposition of a smooth, delamination-free Pd–Ag layer.This work reports a first attempt towards a standardized preparation procedure for Pd-based membranes on cheap, rough, and unrefined Hastelloy X tubular filters. The focus is on surface roughness reduction, in order to allow the deposition of a smooth, uniform Pd–Ag selective layer. The surface roughness of the tubes is tuned via 1) polishing and 2) addition of a smoothening interdiffusion barrier layer based on a boehmite dip-coated dispersion. The polishing time was assessed by studying the average support's roughness variation, permeation behavior and ability to retain ceramic coating. It was found that the best trade-off between polishing extent and gas permeance of the support amounts to 6 h. Moreover, it was assessed that increasing the boehmite load in the interdiffusion barrier precursor solution leads to thicker layers and larger surface roughness reduction, but greater solution instability. 1,2%wt of boehmite load proved the best trade-off between layer reproducibility and support coverage. Different dipping-sintering routes were evaluated in order to improve surface's suitability for electroless plating: a single interdiffusion layer deposition route proved the most suitable for Pd–Ag deposition. The electroless plating performed onto the treated supports results in a continuous Pd–Ag layer, proving Pd–Ag deposition possible on the selected filters.  相似文献   

15.
A Pd–Ag (silver 25 wt.%) permeator tube has been tested in order to measure the electrical resistivity, the strain, and the hydrogen permeability under different hydrogenation conditions in the temperature range 50–400 °C. The permeator tube has been assembled into the membrane module in a finger-like configuration: pure hydrogen has been fed in the lumen side of the tube at a pressure of 100–400 kPa while the permeated hydrogen has been recovered in the shell side of the membrane via a nitrogen purge gas stream of 3.70 × 10−4 mol s−1 at atmospheric pressure.  相似文献   

16.
Direct Ethanol Fuel Cells (DEFCs) have fascinated remarkable attention on account of their high current density and being environmentally friendly. Developing efficient and durable catalysts with a simple and fast method is a great challenge in the practical applications of DEFCs. To this end, the bimetallic Pd–Ag with adjustable Pd:Ag ratios were synthesized via a simple and one-pot strategy on activated carbon as a support in this study. The Pd–Ag/C catalysts with different molar ratios were synthesized by simultaneous reduction of Pd and Ag ions in the presence of the ethanolic sodium hydroxide as a green reducing agent for the first time. Several different methods, including FE-SEM, HR-TEM, XRD, XPS EDX, ICP-OES, and BET were used to confirm the structure and morphology of the catalysts. The performance of catalysts was also examined in ethanol oxidation. Obtained results of electrochemical experiments revealed that the Pd3–Ag1/C catalyst had superior catalytic activity (2911.98 mAmg?1Pd), durability, and long-stability compared to the other catalysts. The excellent catalytic characteristic can be attributed to the synergistic effect between Pd and Ag. We presume that our simple method have the chance to be utilized as a proper method for the synthesis of fuel cell catalysts.  相似文献   

17.
Various Au–Pd bimetallic nanoparticles were electrodeposited on microwave irradiated carbon ceramic electrodes (MWCCE). Au:Pd molar ratios of 75:25, 50:50 and 25:75 were electrodeposited on MWCCE and their electrocatalytic activities for hydrogen evolution reaction (HER) were evaluated. Among them, the alloy with Au:Pd molar ratio of 25:75 showed highest electrocatalytic activity for HER. The structure and nature of these alloys were characterized by scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma, and cyclic voltammetry. Alloying degree of bimetallic nanoparticles and electrodeposition time were optimized. The electrocatalytic activity of bimetallic nanoparticles was also compared with individual non-alloyed Au and Pd catalysts and the results showed that alloy nanoparticles have higher electrocatalytic activity for hydrogen evolution. The Tafel slopes ranges are obtained from 136 mV dec−1 to 165 mV dec−1 for HER on bare and modified MWCCE and kinetic parameters show that the Volmer step must control the HER. The stability of the best electrode is determined by chronopotentiometric and it showed a good stability.  相似文献   

18.
19.
The cycling behavior of the La0.7Mg0.3Ni2.65-xCo0.75Mn0.1AlxLa0.7Mg0.3Ni2.65-xCo0.75Mn0.1Alx(x=0,0.3)(x=0,0.3) alloy electrodes was systematically investigated by XRD, SEM, EIS, XPS and AES measurements, and the function of Al in the La–Mg–Ni-based alloys and the reasons for the improvement of the cycling stability of the alloy electrode with Al were discussed. Results show that the cycling behavior of the La0.7Mg0.3Ni2.35Co0.75Mn0.1Al0.3La0.7Mg0.3Ni2.35Co0.75Mn0.1Al0.3 alloy electrode can be divided into three stages, i.e., the pulverization and Mg oxidation stage, the Mg oxidation and La and/or Al oxidation stage, and the La and Al oxidation and Al oxide film protection stage. The improvement of the cycling stability of the alloy electrode with Al can be ascribed to two factors. One is the decrease in the pulverization of the alloy particles during charge/discharge cycling due to the alloy with Al undergoes a smaller cell volume expansion and contraction. The other is the increase in the anti-oxidation/corrosion due to the formation of a dense Al oxide film during cycling, which is believed to be the most important reason for the improvement of the cycling stability of the La–Mg–Ni–Co–Mn–Al-type alloy electrodes.  相似文献   

20.
The main objective of this project is to study the hydrogen production reaction from oxidative steam reforming of bio-ethanol in the pertinent characteristics of a palladium–silver alloy membrane reactor. The enhancements of hydrogen permeation and of H2/N2 permselectivity were studied in a Ni–Pd–Ag ternary alloy membrane, which was fabricated by successive electroless plating of palladium and silver on stainless steel (PSS) supports modified with nickel electroplating. XRD, SEM, and EDS were used to characterize the surface morphology of the membranes. Ethanol–water mixture (nwater/nethanol = 1 or 3) and oxygen (noxygen/nethanol = 0.2 or 0.7) were fed concurrently into the membrane reactor packed with Zn–Cu commercial catalyst (MDC-3). The reaction temperatures were set at temperatures of 593–723 K and pressures of 3–10 atm. The amount of oxygen added in the feed has a significant effect on the steam reforming reaction of ethanol. At high pressures, autothermal reaction of ethanol with no need for external heating to the composite membrane reactor to produce high purity hydrogen was easily processed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号