首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Hydrogen transportation by pipelines gradually becomes a critical engineering route in the worldwide adaptation of hydrogen as a form of clean energy. However, due to the hydrogen embrittlement effect, the compatibility of linepipe steels and associated welds with hydrogen is a major concern when designing hydrogen-carrying pipelines. When hydrogen enters the steels, their ductility, fracture resistance, and fatigue properties can be adversely altered. This paper reviews the status of several demonstration projects for natural gas-hydrogen blending and pure hydrogen transportation, the pipeline materials used and their operating parameters. This paper also compares the current standards of materials specifications for hydrogen pipeline systems from different parts of the world. The hydrogen compatibility and tolerance of varying grades of linepipe steels and the relevant testing methods for assessing the compatibility are then discussed, and the conservatism or the inadequacies of the test conditions of the current standards are pointed out for future improvement.  相似文献   

2.
In this study, stress intensity factor range (ΔK) decreasing tests were conducted and the in-situ observations were used to investigate the fatigue crack growth behavior of JIS SCM440 steel near the fatigue threshold in a 9-MPa hydrogen gas environment. The fatigue crack growth rate reflected the threshold behavior of the material, although the crack propagation knee point immediately before the threshold stress intensity factor range (ΔKth) could not be distinctly identified. The fatigue crack was also observed to exhibit uneven propagation immediately before ΔKth. In contrast, the knee points in a helium gas environment and air were very distinct. Fractographic analysis further revealed the existence of intergranular facets, which were observed immediately before ΔKth in the hydrogen gas environment. Conversely, no facet was observed immediately before ΔKth in the helium gas environment and air. The formation of the facets was considered to be one of the causes of the uneven crack propagation immediately before ΔKth in the hydrogen gas environment.  相似文献   

3.
The effects of rolling on the hydrogen-assisted fatigue crack growth characteristics of AISI 301, 304L and 310S stainless steels (SSs) were investigated. In hydrogen, cold rolled specimens with a 20% thickness reduction were found to increase the fatigue crack growth rates (FCGRs) in the 301 and 304L SSs, and to a much lesser extent in the 310S SS. However, enhanced slip was observed for the 310S specimen in hydrogen. Hydrogen-accelerated FCGRs of the 301 and 304L SSs were related with the crack growth through the strain-induced martensite formed in the plastic zone ahead of the crack tip.  相似文献   

4.
    
Hydrogen embrittlement of line pipe steels in the natural gas transmission and distribution network is investigated. The objective is to assess whether the existing network can be used to safely transport a mixture of hydrogen and natural gas. The surveyed literature indicates that the hydrogen-induced acceleration of fatigue crack growth induced by natural gas pressure fluctuations can be the most probable type of failure. We analyzed the fatigue crack growth in line pipe steels containing a long axial crack in the inner diameter (ID) surface by accounting for random cyclic loading due to random and realistic pressure fluctuations, crack closure, and accurate calculation of the stress intensity factor. Using the available experimental data for the crack growth rate vs. stress intensity factor range in the presence of hydrogen, we simulated crack growth over a period of 100 years. The results show that under typical pressure fluctuations in the natural gas network, cracks with depths less than 40% of the wall thickness will never reach depths equal to 75% of the wall thickness. This is a conservative estimate that results from i) the nature of the geometry of the initial flaw in the ID surface that we used in the analysis, ii) the fact that the existing experimental data for the effect of hydrogen on the Paris law are for pressures that are orders of magnitude larger than the partial pressures intended for the hydrogen gas in the mixture, and iii) the experimental data are for fatigue crack growth in pure hydrogen gas without impurities normally present in natural gas, such as oxygen or methane, that can inhibit hydrogen uptake.  相似文献   

5.
    
The effect of hydrogen (H) on the fatigue behavior is of significant importance for metallic structures. In this study, the hydrogen-enhanced fatigue crack growth rate (FCGR) tests on in-situ electrochemically H-charged ferritic Fe-3wt%Si steel with coarse grain size were conducted. Results showed strong difference between the H-charged and the non-charged conditions (reference test in laboratory air) and were in good agreement with the results from literature. With H-charging, the fracture morphology changed from transgranular (TG) type to “quasi-cleavage” (“QC”), with a different fraction depending on the loading frequency. With the help of electron channeling contrast imaging (ECCI) inside a scanning electron microscope (SEM), a relatively large area in the failed bulk specimen could be easily observed with high-resolution down to dislocation level. In this work, the dislocation sub-structure immediately under the fracture surfaces were investigated by ECCI to depict the difference in the plasticity evolution during fatigue crack growth (FCG). Based on the analysis, the H-enhanced FCG mechanisms were discussed.  相似文献   

6.
The low-cycle fatigue and fatigue crack growth (FCG) properties of X80 pipeline steel in hydrogen atmosphere were determined to investigate the variation of hydrogen pressure and its influence on fatigue life. The test environment was switched to a hydrogen atmosphere after 1000, 3000, or 5000 cycles of pre-fatigue testing in a nitrogen atmosphere. Notch tensile tests were conducted in nitrogen and hydrogen atmospheres after the specimens were pre-fatigued for 3000 or 5000 cycles. The results showed that the cycles to failure of X80 decreased exponentially with increasing hydrogen pressure. When the displacement amplitude (DA) values remained steady (below 3000 cycles), the X80 steels showed no noticeable deterioration in the fatigue properties with or without hydrogen. When the DA values increased (above 5000 cycles), cracks propagated slowly and fatigue properties were strongly reduced in the hydrogen atmosphere, but not in nitrogen. Hydrogen-accelerated crack growth dominates the reduction of fatigue life below 0.6 MPa of hydrogen pressure. Hydrogen-accelerated crack initiation plays a more important role than FCG in the reduction of fatigue life with increasing hydrogen pressure.  相似文献   

7.
The fatigue limit properties of a carbon steel and a low-alloy CrMo steel were investigated via fully-reversed tension-compression tests, using smooth specimens in air and in 115-MPa hydrogen gas. With respect to the CrMo steel, specimens with sharp notches were also tested in order to investigate the threshold behavior of small cracks. The obtained SN data inferred that the fatigue limit was not negatively affected by hydrogen in either of the steels. Observation of fatigue cracks in the unbroken specimens revealed that non-propagating cracks can exist even in 115-MPa hydrogen gas, and that the crack growth threshold is not degraded by hydrogen. The experimental results provide justification for the fatigue limit design of components that are to be exposed to high-pressure hydrogen gas.  相似文献   

8.
In this paper we demonstrate the suppression of hydrogen-assisted fatigue crack growth in type 316L austenitic stainless steel by cavitation peening employing a cavitating jet in air. Plate bending fatigue tests on pre-cracked samples were conducted after cathodic hydrogen charging with and without cavitation peening. Without cavitation peening, the hydrogen effect on the crack growth behavior at low applied stress was clearly demonstrated compared with high applied stress in the fatigue test. The coalescence of sub-cracks and the main crack propagating from the pre-crack were observed in the hydrogen charged specimen. This phenomenon significantly accelerated the crack growth. This unexpected fracture was suppressed by introducing compressive residual stress by cavitation peening regardless of the length of processing time. In addition, lengthier treatment reduced the crack growth rate of the hydrogen charged specimen by 75% compared to an untreated one.  相似文献   

9.
The effect of hydrogen on fatigue crack growth behavior of three stainless steels has been investigated from the viewpoint of microscopic fatigue mechanisms, martensitic transformation and hydrogen content. Fatigue crack growth rates in the hydrogen-charged SUS304 and SUS316 were accelerated with respect to crack growth rates in uncharged specimens. The crack growth rate in the hydrogen-charged SUS316L was only slightly higher than that in the uncharged SUS316L. Martensitic transformation on the fatigue fracture surfaces was detected using X-ray diffraction both in the hydrogen-charged and uncharged specimens of SUS304, SUS316 and SUS316L. Materials with increased tendency for martensitic transformation also showed increased acceleration in fatigue crack growth rate due to hydrogen. It was concluded that martensitic transformation in the vicinity of the fatigue crack tip increased the local diffusion of hydrogen thus increasing crack growth rate.  相似文献   

10.
    
The fatigue life estimation of metals operating in hydrogen-rich environments such as hydrogen pipelines, hydrogen-burning internal combustion engines, etc. is important. Studies in the past 40 years have shown that the diffusion of hydrogen into steel and other metals causes various chemical reactions, hydrogen-material interactions, and microstructural changes. That leads to hydrogen embrittlement (HE) and other types of hydrogen damage mechanisms including hydrogen environmentally assisted cracking (HEAC). Hydrogen embrittlement mechanisms, such as hydrogen-enhanced localized plasticity (HELP) and hydrogen-enhanced decohesion (HEDE) can have synergetic effects in steel depending on the hydrogen concentration level. At concentrations above and below the critical hydrogen concentration, HEDE and HELP dominate the embrittlement process, respectively. Different HE mechanisms result in distinctly different fracture modes, both ductile and fully brittle. The ultrasonic vibration fatigue life of bcc steel with a ferrite-pearlite microstructure pre-charged with hydrogen at different concentrations is studied. Modeling is based on the unified mechanics theory (UMT), which does not need any empirical dissipation/degradation potential function or an empirical void evolution function. However, the UMT does require analytical derivation of the thermodynamic fundamental equation of the material, which is used to calculate the thermodynamic state index (TSI) of the material. The UMT is ab-initio unification of the second law of thermodynamics and the universal laws of motion of Newton [1]. Dissipation/degradation evolution is governed by Boltzmann's second law of thermodynamics entropy formulation. The original contribution of this paper is the derivation of the thermodynamic fundamental equation of pre-hydrogen embrittled bcc steel subjected to ultrasonic very high cycle fatigue and the numerical simulations of fatigue life estimation using the proposed novel model. The synergetic interaction of hydrogen embrittlement mechanisms in steel and other metallic materials, i.e., HELP and HEDE at different hydrogen concentrations (HELP + HEDE model) is also studied, reviewed, and applied. The synergetic effects between ultrasonic vibration fatigue life and synergistically active hydrogen embrittlement mechanisms in low carbon bcc steel (S355J2+N, equivalent to ASTM A656), according to the HELP + HEDE model for HE, is modeled for the first time using UMT and also thoroughly discussed.  相似文献   

11.
The effects of α′ martensite and deformation twin on hydrogen-assisted fatigue crack growth (FCG) were investigated in cold/warm-rolled type 304 stainless steel in 5 MPa hydrogen and argon gas atmosphere. The rate of FCG is reduced in argon gas, while greatly enhanced in hydrogen gas after cold-rolling. The FCG rates of warm-rolled specimens, no matter tested in hydrogen gas or argon gas, are reduced comparing with as-received specimens. After cold-rolling, α′ martensite formed around the grain boundary promotes hydrogen-assisted crack initiation and propagation. The deformation twin plays an important role during FCG besides α′ martensite after warm-rolling, and hydrogen-assisted cracking along the twin boundary and slip band can enhance the FCG rate during cycle loading.  相似文献   

12.
Design fatigue life of stationary hydrogen storage vessel constructed of the practical materials of low alloy steels was analyzed based on fracture mechanics in hydrogen and air of 45, 85 and 105 MPa using cylindrical model with inside diameter (Di) of 150, 250 and 350 mm. Design fatigue life of five typical model materials was also analyzed to discuss the effect of Di on the design fatigue life by hydrogen-induced crack growth of the vessel. KIC of all the practical materials qualified the leak before burst. Design fatigue life generally increased slightly with increasing Di in air, while design fatigue life by KIH was much shorter than that in air. Hydrogen influence on design fatigue life increased with increasing Di due to that KI at initial crack increased with increasing Di. The design fatigue life data of the model materials under the conditions of Di, pressure, ultimate tensile strength, KIH, fatigue crack growth rate and regulations in both hydrogen and air were proposed quantitatively for materials selection and development for stationary hydrogen storage vessel.  相似文献   

13.
    
In this study, the feasibility of the fusion sensing of eddy current testing (ECT) and ultrasonic testing (UT) as effective tools to clarify the hydrogen-embrittlement mechanism of austenitic stainless steels was investigated. Fatigue testing was conducted on hydrogen-charged and uncharged AISI 304 specimens. The effect of hydrogen exposure on the martensitic transformation, and crack closure and crack face morphology were investigated by ECT and UT. The results suggest that a comparison of ECT and UT results can evaluate martensitic transformation and crack closure and crack face morphology, which are important in understanding the hydrogen embrittlement of austenitic stainless steels.  相似文献   

14.
The effect of quenching-tempering (QT) treatment on the hydrogen embrittlement (HE) resistance of a reactor pressure vessel steel was studied. Decomposition of M3C/VC carbides and precipitation of M7C3 carbides were confirmed by transmission electron microscopy and atom probe tomography observations. Tensile tests showed that HE sensitivity decreased to a negligible level after QT treatment. The improvement of HE resistance was mainly attributed to the decreased number of M3C carbides which act as the reversible trapping sites for hydrogen. This was supported by the decreased concentration of reversible hydrogen as measured by thermal desorption spectroscopy. The amount of irreversible hydrogen (probably trapped at VC carbides) also decreased, which is however not considered responsible for the HE improvement.  相似文献   

15.
Hydrogen, at critical concentrations, responsible for hydrogen-induced mechanical property degradation cannot yet be estimated beforehand and can only be measured experimentally upon fracture with specific specimen sizes. In this work, we develop two deep learning artificial neural network (ANN) models with the ability to predict hydrogen concentration responsible for early mechanical failure in martensitic ultra-high-strength steels. This family of steels is represented by four different steels encompassing different chemical compositions and heat treatments. The mechanical properties of these steels with varying size and morphology of prior austenitic grains in as-supplied state and after hydrogen-induced failure together with their corresponding hydrogen charging conditions were used as inputs. The feed forward back propagation models with network topologies of 12-7-5-3-2-1 (I) and 14-7-5-3-2-1 (II) were validated and tested with unfamiliar data inputs. The models I and II show good hydrogen concentration prediction capabilities with mean absolute errors of 0.28, and 0.33 wt.ppm at test datasets, respectively. A linear correlation of 80% and 77%, between the experimentally measured and ANN predicted hydrogen concentrations, was obtained for Model I and II respectively. This shows that for this family of steels, the estimation of hydrogen concentration versus property degradation is a feasible approach for material safety analysis.  相似文献   

16.
    
The hydrogen embrittlement (HE) resistance of 2205 duplex stainless steel (DSS) treated with laser peening (LP) with different laser power densities was studied. The results show that LP changes the morphologies and distribution of ferrite phase and austenitic phase, thus changes the path of hydrogen transportation and diffusing. LP-induced grain refinement provides more tortuous grain boundaries that increases the difficulty of hydrogen atoms to penetrate them. The beneficial LP-induced microstructures interacts (e.g. dislocation entanglements, dislocation walls, mechanical twins) and helps to trap the hydrogen atoms, reducing their mobility ability. The hydrogen determination test provides direct evidence that LP reduced the amount of hydrogen penetration into the material. In addition, the tensile fracture exhibits that the average depth of the brittle region was inversely proportional to the laser power density, suggesting that an increase in laser power density can reduce the HE sensitivity of 2205 DSS.  相似文献   

17.
Hydrogen-induced damage is an inevitable challenge in pipeline safety applications, especially, the fusion welded joints owing to microstructure heterogeneity caused by welding process. In this work, X100 pipeline steel was subjected to friction stir welding (FSW) at rotation rates of 300–600 rpm under water cooling, and the relationship among the microstructure, hydrogen diffusivity, and hydrogen embrittlement (HE) behavior of the nugget zone (NZ) were studied. The NZ at 600 rpm had the highest effective hydrogen diffusion coefficient (Deff) of 2.1 × 10?10 m2/s because of the highest dislocation density and lowest ratio of effective grain boundary. The Deff decreased with decreasing rotation rate due to the decrease of dislocation density and the increase of ratio of effective grain boundary, and the lowest Deff of 1.32 × 10?10 m2/s was obtained at 300 rpm. After hydrogen charging, the tensile strength of all specimens decreased slightly, while the elongation decreased significantly. As the rotation rate decreased, the elongation loss was obviously inhibited, and ultimately a lowest elongation loss of 31.8% was obtained at 300 rpm. The abovementioned excellent mechanical properties were attributed to the fine ferrite/martensite structure, low Deff, and strong {111}//ND texture dramatically inhibiting hydrogen-induced cracking initiation and propagation.  相似文献   

18.
    
This work develops a theoretical analysis of the coating permeability necessary for use as internal coatings of transmission pipelines to prevent hydrogen embrittlement. Internal coating materials suitable to be applied in situ on existing steel pipelines are also evaluated. Twelve different commercially available coatings; crosslinked poly (vinyl alcohol) (PVA), poly (vinyl chloride) and bisphenol A diglycidyl ether (DGEBA)/polyetheramine (D-400) epoxy coatings prepared in-house were tested. Films fabricated from two commercial epoxies had hydrogen permeability of 0.40 Barrer and 0.35 Barrer respectively, which show potential as coating materials. A hydrogen permeability of 0.0084 Barrer was achieved with a crosslinked poly (vinyl alcohol) coating, indicating that this material shows the highest potential of all coatings tested. Unsteady-state hydrogen diffusion through coated steel was then modeled to evaluate the effect of the coating film in reducing hydrogen embrittlement. The result shows that with a 2 mm PVA coating, hydrogen permeation inside the coating will take seven years to reach equilibrium and the final hydrogen concentration on the steel surface will be 44% lower than that without a coating. Greater protection can be provided if coatings can be developed with lower hydrogen permeability.  相似文献   

19.
    
This work demonstrates a new method to enable cryogenic atom probe tomography (cryo-APT) for the investigation of hydrogen in a high-strength steel, specifically to detect hydrogen localised to V–Mo–Nb carbides finely dispersed in the matrix. Prior cryogenic experiments required highly customised atom probe instrumentation to enable samples to be kept at cryogenic temperatures throughout the vacuum transfer process. Here we use an alternative approach without modification of the atom probe instrument itself, whilst still achieving hydrogen mapping. Additionally, we use this method to investigate the roles of solvent and solutes within the charging electrolyte, and we demonstrate that deuterated solute is not required when using heavy water as solvent, expanding the range of electrolytes that can be utilised in APT hydrogen charging experiments. This work reduces the experimental requirements for cryo-APT and makes the technique accessible to all APT equipped laboratories.  相似文献   

20.
To investigate the mutual effect of hydrogen, microstructures and stress concentration on the fatigue failure, fatigue behaviors of X65 steel welded joints in both air and saturated H2S solution were investigated at high cycle regime. The experimental result demonstrates that due to lower dislocation density observed by electron backscattered diffraction (EBSD), the fine grain heat affected zone (FGHAZ) is prone to induce cyclic strain localization and further lead to fatigue crack propagating along the FGHAZ in air. Furthermore, the quasi-cleavage with brittle-like fatigue striations and secondary crack on the fracture surface in saturated H2S solution is attributed to hydrogen embrittlement. Moreover, compared with base metal (BM) and FGHAZ, the weld metal (WM) and coarse grain heat affected zone (CGHAZ) are composed of bainite and martensite/austenite (M/A) phase, and more sensitive to hydrogen. Therefore, the fatigue crack is prone to grow along the interface between WM and CGHAZ under the normal applied stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号