首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using nonedible waste frying oil (WFO) as biodiesel and hydrogen in the mix composition may partly replace significant quantities of diesel fuel and help reduce fossil fuel reliance. The combination of diesel fuel, waste-fired biodiesel, and hydrogen gas can improve the performance, combustion, and emissions of single-fuel and dual-fuel diesel engines. This may lead to a novel alternative fuel mix pattern and modification for diesel engines, which is the research gap. Although there has been some research on waste-fired biodiesel and hydrogen gas-powered dual-fuel engines with the goal of partly replacing fossil fuels to a larger degree, there has been very little progress in this area. As a result, the current research effort focuses on using diesel fuel (100%, 30%, and 60%), waste-fired biodiesel (at 100%, 70%, and 40%), and hydrogen gas as fuel sources (5 and 10 liters per minute [LPM]). According to the current experiment, it was perceived in both dual-fuel and single-fuel modes. Under duel-fuel mode, the engine results for WFOB70D30 + H10 fuel blend had higher 4.2% (brake thermal efficiency [BTE]), 19.72% (oxides of nitrogen [NOx]), and 9.09% (ignition delay [ID]) with a minimal range of (in-cylinder pressure, MFB, volumetric efficiency and heat release rate [HRR]) and a dropped rate of 4.34% (brake-specific energy consumption [BSEC]), 33.33% (carbon monoxide [CO]), 39.28% (hydrocarbons [HC]), 9.43% (smoke), and 6.97% (combustion duration [CD]) related to diesel fuel at peak load. However, single-fuel powered diesel engines provide minimal performance for the WFOB40D60 fuel blend with (11.32% lower BTE and 2.04% higher BSEC) and minimal rate of combustion (lower cylinder pressure, 2.12% minimal CD, 14.72% higher ID, minimal HRR combustion, volumetric efficiency, and MFB). Emitted fewer emissions (9.09% less CO, 4.87% less HC, 0.92% higher NOx, and 1.69% more smoke) than diesel fuel at peak load. Therefore, it was concluded that adding 10 LPM of hydrogen gas to the biodiesel under a dual-fuel condition leads to better combustion, better performance, and less pollution than the single-fuel mode of operation.  相似文献   

2.
With a specific end goal to take care of the worldwide demand for energy, a broad research is done to create alternative and cost effective fuel. The fundamental goal of this examination is to investigate the combustion, performance and emission characteristics of diesel engine using biodiesel blends enriched with HHO gas. The biodiesel blends are gotten by blending KOME obtained from transesterification of karanja oil in various proportions with neat diesel. The HHO gas is produced by the electrolysis of water in the presence of sodium bicarbonate electrolyte. The constant flow of HHO gas accompanied with biodiesel guarantees lessened brake specific fuel consumption by 2.41% at no load and 17.53% at full load with increased the brake thermal efficiency by 2.61% at no load and 21.67% at full load contrasted with neat diesel operation. Noteworthy decline in unburned hydrocarbon, carbon monoxide, carbon-dioxide emissions and particulate matter with the exception of NOx discharge is encountered. The addition of EGR controls this hike in NOx with a slight decline in the performance characteristics. It is clear that the addition of HHO gas with biodiesel blends along with EGR in the test engine improved the overall characterization of engine.  相似文献   

3.
In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime.The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition.The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC pollutant emissions.The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines.  相似文献   

4.
In the current investigation, the enrichment of hydrogen with the honge biodiesel blend and diesel is used in a compression ignition engine. The biodiesel is derived from the honge oil and mixed with diesel fuel by 20% (v/v). Thereafter, hydrogen at different volume flow rates (10 and 13 lpm) is introduced into the intake manifold. The outcomes by enrichment of hydrogen on the performance, combustion and emission characteristics are investigated by examining the brake thermal efficiency, fuel consumption, HC, CO, CO2, NOₓ emissions, in-cylinder pressure, combustion duration, and rate of heat release. The engine fuelled with honge biodiesel blend is found to enhance the thermal efficiency, combustion characteristics. Compare to diesel, the BTE increased by 2.2% and 6% less fuel consumption for the HB20 + 13H2 blend. Further, reduction in the emission of exhausts gases like CO and HC by 21% and 24%, respectively, are obtained. This is due to carbon-free structure in hydrogen. Moreover, due to high pressure in the cylinder, there is a slight increase in oxides of nitrogen emission compare to diesel. The combustion characteristics such as rate of heat release, combustion duration, and maximum 2rate of pressure rise and in-cylinder pressure are high due to hydrogen.  相似文献   

5.
Compression ignition engines are the dominant tools of the modern human life especially in the field of transportation. But, the increasing problematic issues such as decreasing reserves and environmental effects of diesel fuels which is the energy source of compression ignition engines forcing researchers to investigate alternative fuels for substitution or decreasing the dependency on fossil fuels. The mostly known alternative fuel is biodiesel fuel and many researchers are investigating the possible raw materials for biodiesel production. Also, hydrogen fuel is an alternative fuel which can be used in compression ignition engines for decreasing fuel consumption and hazardous exhaust emissions by enriching the fuel. In this study, influences of hydrogen enrichment to diesel and diesel tea seed oil biodiesel blends (B10 and B20) were investigated on an unmodified compression ignition engine experimentally. In consequence of the experiments, lower torque and higher brake specific fuel consumption data were measured when the engine was fuelled diesel biodiesel blends (B10 and B20) instead of diesel fuel. Also, diesel biodiesel blends increased CO2 and NOx emissions while decreasing the CO emissions. Hydrogen enrichment (5 l/m and 10 l/m) was improved the both torque and brake specific fuel consumption for all test fuels. Furthermore, hydrogen enrichment reduced CO and CO2 emissions due to absence of carbon atoms in the chemical structure for all test fuels. Increasing flow rate of hydrogen fuel from 5 l/m to 10 l/m further improved performance measures and emitted harmful gases except NOx. The most significant drawback of the hydrogen enrichment was the increased NOx emissions.  相似文献   

6.
The environmental degradation and depletion of fossil fuel, urges the need of renewable fuel for IC engines. Among the renewable fuel, biodiesel are widely used as alternative fuel but for recent years hydrogen is also considered as alternative fuel because of zero emission but it possess higher auto ignition temperature. In order to reduce the self-ignition temperature of hydrogen and another liquid fuel is mixed and operated as a dual fuel mode condition in CI engine. The current investigation aims to analyse the impact of natural antioxidant additive on hydrogen-enriched biodiesel operation in a diesel engine. During the experimentation process hydrogen is admitted at the intake manifold and B20 blend of juliflora biodiesel is injected in combustion cylinder. The three test fuel samples are used for the experimentation process such as diesel, B20 and B20 with hydrogen in different flow rates such as 8, 10, 12, 16,20lpm. B20 with hydrogen shows an increment of brake thermal efficiency (BTE). Among the test fuels B20 + 16lpm and B20 + 20lpm blends have better improvement of BTE of 28.815% and 28.32%, which is higher than the conventional engine at maximum load CO, HC emission is also lower for B20 + 16lpm and B20 + 20lpm than other blends but the NOx emission increases of 26 and 28% than diesel respectively. In order to minimize the NOx emission, natural antioxidant additive Melia Azedarach (MA) of 1000 ppm is added to B20 + 16lpm and found that B20 + 16lpm with MA shows an improvement of BTE 2.17% higher than B20 + 16lpm without additive and the NOx emission for B20 + 16lpm with additive is 1079 ppm, which is 21.9% lower than B20 + 16lpm without additives. Therefore B20 + 16lpm with additive is superior than other test blends.  相似文献   

7.
High-rise in the air pollution levels due to combustion of the fossil fuel gives us the opportunity to discover environmentally friendly and clean fuels for the engines. Biodiesel originated from cashew nut shell oil through transesterification process can be blended or used as a neat fuel in unmodified engines. This work investigates the effect of alumina nanoparticles on emission and performance characteristics of cashew nut shell biodiesel. Neat cashew nut shell biodiesel prepared by conventional transesterification is termed as BD100 and biodiesel prepared by modified transesterification with the addition of alumina nanoparticles is termed as BD100A. Experimental results on unmodified diesel engine revealed that emission parameters such as CO, HC, NOx, and smoke were decreased by 5.3%, 7.4%, 10.23%, and 16.1% for BD100% and 8.8%, 10.1%, 12.4%, and 18.4% for B100A, respectively, compared to diesel fuel. At full load conditions, compared to diesel fuel, the BTE dropped by 1.1% and 2.3%, whereas the BSFC increased by 3.8% and 5.1% for B100A and B100 correspondingly.  相似文献   

8.
The present study investigated the effect of compression ratio (CR) with the use of exhaust gas recirculation (EGR) technology on the performance of combustion characteristics at different CRs and engine loads; the brake thermal efficiency (BTE), specific fuel consumption (SFC), volumetric efficiency (VOL.EFF), exhaust gas temperature, carbon dioxide emission (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and oxygen content (O2). The single-cylinder, four-stroke compression ignition engine was run on a mixture of diesel and biodiesel prepared from Iraqi waste cooking oil at (B0, B10, B20, and B30). A comparison has been achieved for these combustion characteristics at different blends, load, and CRs (14.5, 15.5, and 16.5) at 1500 rpm constant engine speed. The transesterification process is used to produce biodiesel and ASTM standards have been used to determine the physical and chemical properties of biodiesel and compare them to net diesel fuel. The preliminary conducting tests indicated that engine performance and emissions improved with the B20 mixture. Experimental test results showed an increase in BTE when CR increased by 17% and SFC increased by 23%. It also found a higher VOL.EFF by 6% at higher pressure ratios. A continuous decrease in BTE values and an increase in SFC were sustained when the percentage of biodiesel in the mixture was increased. Emissions of carbon dioxide, HC, and NOx increased by 12%, 50%, and 40%, respectively, as CR reached high values. NOx increased with the addition of biodiesel to 35%, which necessitated the use of EGR technology at rates of 5% and 10%. The results indicated that the best results were obtained in the case of running the engine with a mixing ratio of B20 with the addition of 10% EGR, NOx decreased by 47% against a slight increase in other emissions.  相似文献   

9.
The Neem-oil methyl ester (NME) produced from transesterification of Neem-oil was mixed with diesel fuel in the share of 10%(N10) and 20%(N20) were used with varying flow rate of oxy-hydrogen gas (HHO) gas at 5%,10% and 15% energy share along with exhaust gas recirculation (EGR) in a 3.7 kW CI engine. Presence of fuel-borne oxygen in NME, facilitates increase in brake thermal efficiency (BTE) at high load related to neat diesel operation. Further the BTE was improved by introducing varying flow rate of HHO gas in order to maintain energy share of 5, 10 and 15% at all loads. The BTE was found as 33.80% and 35.40% for N20 + 10%HHO and N20 + 15%HHO compared to 31.5%, 30.4% and 29.4% for N20, N10 and Neat diesel fuel respectively. Significant emission reduction of CO, CO2, uHC and smoke opacity were observed during NME + HHO gas operation, but NOx emission was augmented which was controlled using EGR along with further improvement in the engine characteristics.  相似文献   

10.
This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced.  相似文献   

11.
Honne oil methyl ester (HOME) is produced from a nonedible vegetable oil, namely, honne oil, available abundantly in India. It has remained as an untapped new possible source of alternative fuel that can be used for diesel engines. The present research is aimed at investigating experimentally the performance, exhaust emission, and combustion characteristics of a direct injection diesel engine (single cylinder, water cooled) typically used in agricultural sector over the entire load range when fuelled with HOME and diesel fuel blends, HM20 (20% HOME + 80% diesel fuel)–HM100. The properties of these blends are found to be comparable with diesel fuel conforming to the American and European standards. The combustion parameters of HM20 are found to be slightly better than neat diesel (ND). For other blend ratios, these combustion parameters deviated compared with ND. The performance (brake thermal efficiency (BTE), brake‐specific fuel consumption, and exhaust gas temperature) of HM20 is better than ND. For other blend ratios, BTE is inferior compared with ND. The emissions (CO and SO) of HM20–HM100, throughout the entire load range, are dropped significantly compared with ND. Unburned hydrocarbon emissions of HM20–HM40, throughout the entire load range, is slightly decreased, whereas for other blend ratios, it is increased compared with ND. NOx emissions of HM20, throughout the entire load range, is slightly increased, whereas for other blend ratios, it is slightly decreased. The reductions in exhaust emissions together with increase in BTE made the blend HM20 a suitable alternative fuel for diesel fuel and thus could help in controlling air pollution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

13.
The main purpose of this study is to analyse the effects of oxy hydrogen (HHO) along with the Moringa oleifera biodiesel blend on engine performance, combustion and emission characteristics. HHO gases were generated using the typical electrolysis process using the potassium hydroxide solution. The experiments were performed under various engine loads of 25%, 50%, 75%, and 100% in a constant speed engine. Biodiesel from the M. oleifera was prepared by the transesterification process. Further, the procured biodiesel blends mixed with neat diesel at the concentration of 20% (B20) and 40% (B40). In addition to above, the HHO gas flow rate to the engine chamber maintained at the flow rate of 0.5 L-1. The use of the 20% and 40% blends with HHO reported less BTE compared to the neat diesel. However, B20 reported marginal rise in the BTE due to the addition of the HHO gas. On the other hand, addition of HHO gas to the blends significantly dropped the brake specific fuel consumption. With regard to the emissions, addition of the biodiesel blends reduced the concentration of the CO, HC, and CO2. Nevertheless, no reduction reported in the formation of the NO. However, adding the HHO to the biodiesel reduced the average NOx by 6%, which is a substantial effect. Overall, HHO enriching biodiesel blends are the potential replacement for the existing fossil fuels for its superior fuel properties compared to the conventional diesel.  相似文献   

14.
Microalgae biodiesel has been considered ?as a clean renewable fuel for diesel marine engines. This is due to its optimistic characterizations such as ?rapid growth rate, high productivity, and its ability to convert CO2 into fuel. In this study, the use of microalgae biodiesel, obtained from Botryococcus braunii, as an alternative fuel for diesel marine engines has been investigated. The diesel engine is verified experimentally using Ni-Doped ZnO nano additive blends with algae biodiesel and neat diesel fuel. The results showed that doped nano additive blends? produce less emission compared to B20.  相似文献   

15.
The purpose of this study is to experimentally investigate the use of grapeseed oil as a fuel substitute obtained from biomass waste from winery industry and the synergic effect of hydrogen addition for compression ignition engine application. The experiments were carried out in a single cylinder, four stroke diesel engine for various loads and energy share of hydrogen. Combustion, performance and emission characteristics of grapeseed biodiesel, neat grapeseed oil and diesel have been analysed and compared with the results obtained with hydrogen induction in the intake manifold in dual fuel mode. At full load, maximum brake thermal efficiency of the engine with diesel, grapeseed biodiesel and neat grapeseed oil has increased from 32.34%, 30.28% and 25.94% to 36.04%, 33.97% and 30.95% for a maximum hydrogen energy share of 14.46%, 14.1% and 12.8% respectively. Although there is an increasing trend in Nitric Oxide emission with hydrogen induction, smoke, brake specific hydrocarbon, carbon monoxide, and carbon dioxide emissions respectively, reduces. Nitric oxide emission of Grapeseed biodiesel with maximum hydrogen share at full load is higher by 43.61% and smoke emission lower by 19.73% compared to biodiesel operation without hydrogen induction.  相似文献   

16.
This paper aims at studying the effect of hydrogen induction on engine performance, emission and combustion behaviour of a diesel engine fuelled with the emulsion of used palm oil (called as WCO-waste cooking oil) as pilot fuel and hydrogen as primary fuel. A single cylinder water-cooled direct injection diesel engine was tested at 100% and 40% loads. Results were compared with neat diesel, neat WCO and WCO emulsion at both loads in single fuel operation. WCO emulsion in single fuel mode indicated improvement in performance and reduction in all emissions as compared to neat WCO. Dual fuel operation with hydrogen induction further reduced the emissions of smoke HC and CO with WCO as pilot fuel at all power outputs. However, hydrogen induction resulted in reduced thermal efficiency at 40% load. WCO emulsion showed higher ignition delay as compared to neat WCO. Dual fuel operation with hydrogen induction increased the ignition delay further. Heat release pattern showed higher premixed combustion rate with hydrogen induction mainly at high power outputs. Premixed combustion rate became very high at higher rates of hydrogen admission mainly at high power output. In general, hydrogen induction showed superior performance at high power output and inferior performance at low power output with WCO emulsion as injected fuel.  相似文献   

17.
Alternative fuels have sparked a lot of interest as oil deposits have decreased and environmental concerns have grown. Biodiesel is an alternative fuel that is being researched as a possible replacement for fossil fuels. In the current investigation, the combustion performance, and emission characteristics of CI(Compression Ignition) engine were examined by changing the fuel injection pressure (180, 200, 220 and 240 bar). The biodiesel (B20) used in this analysis was obtained from Mahua oil at 20% v/v blended with neat diesel (20% Mahua Biodiesel + 80% Diesel). CeO2(Cerium Oxide) nanoparticles were introduced to the B20 fuel at four distinct concentrations are 25, 50, 75, and 100 ppm. Performance characteristics such as BTE(Brake Thermal Efficiency) and BSFC(Brake Specific Fuel Consumption) were inferior to diesel, at 240 bar B20 with 25 ppm CeO2 indicated 1.9% increased BTE and 3.8% reduced BSFC compared B20 and 6% lower EGT (Exhaust Gas Temperature) compared diesel. At 200 bar, fuel samples indicated slightly higher In-Cylinder pressure and lower HRR (Heat release rate) compared to diesel. At 200 bar FIP(Fuel Injection Pressure), HC(Hydro Carbon) and CO(Carbon Monoxide) emissions were reduced significantly compared to diesel. The largest reduction in smoke opacity and NOx(Nitrous Oxide) emissions were observed at 240 bar with 75 ppm dosage, but CO2(Carbon Dioxide) emissions were higher at 220 bar.  相似文献   

18.
The use of hydrogen in internal combustion engines is pointed out as an alternative to reduce greenhouse gas emissions. In applications that require high levels of torque and low engine speeds, compression ignition (CI) engines are more appropriate. However, because of the high auto-ignition temperature of hydrogen, its use in these engine types is more suitable when the dual-fuel concept is applied. This study comprehensively investigates, through experimental techniques, the use of hydrogen port-injection in a four-stroke single-cylinder CI engine operating with the renewable diesel-like fuels hydrotreated vegetable oil (HVO) and farnesane, in comparison to fossil diesel dual-fuel operation. In this sense, the present work aims to fill a gap in the literature by performing a novel analysis of dual-fuel operation with hydrogen, considering different substitution fractions, and using groundbreaking biofuels, such as HVO and farnesane. The results showed that in-cylinder pressure and temperature were increased with H2 enrichment for every pilot fuel, but green diesel fuels presented lower values than those for diesel operation. Furthermore, hydrogen port injection slightly delayed the start of combustion and increased the ignition delay, but a reduction in both premixed and diffusion combustion duration was observed. Reductions in PM, CO, and CO2 emissions were reported during H2 addition for every pilot fuel, while increased NOx was observed. Despite this increase, both HVO and farnesane decreased the emissions of this pollutant in single and dual-fuel operations, compared with fossil diesel. In addition, both renewable diesel fuels presented higher BTE than diesel for every studied H2 mass flow.  相似文献   

19.
This work explores the influence of hydrogen and ethanol on improving engine's behavior of Maduca longifolia oil (MO) based dual fuel diesel engine. A mono cylinder diesel engine was tested in dual fuel mode of operation at the rated power output of 3.7 kW under variable hydrogen energy shares from 0 to the maximum allowable limit (until severe knocking i.e. upto 20%). The knock limit was further extended by injecting water and ethanol at the intake manifold and the engine's performance, emission and combustion characteristics were analyzed. In addition ethanol was also injected and introduced along with the intake air for comparison with hydrogen dual fuel mode. Dual fuel operation increased the BTE from 25.2% with neat MO to a maximum of 28.5% and 30% respectively with hydrogen and ethanol for the energy share of 15% and 38% where as the BTE was 30.8% with ND. The smoke opacity was reduced from 78% with neat MO to 58% for the hydrogen energy share of 15% which is the MEP (maximum efficiency point) whereas the smoke emission was noted as 51% with ND operation. However, hydrogen induction increased the NO (nitric oxide) emission. Injection of water and ethanol at the inlet was observed to extend the knocking limit with improved BTE. The BTE reached a maximum of 30.1% with 5% water and 30.8% with 10% ethanol injection. The MEPs were arrived as 31% and 30% hydrogen energy shares respectively with 5% water and 10% ethanol injection. It was concluded that hydrogen induction can be very effective in improving the diesel engine's performance when using MO as base fuel when operating on dual fuel mode. The performance could be improved by extending the knock limit by injecting ethanol and water along with hydrogen.  相似文献   

20.
Numerous studies explored the possibility and effective strategies for supplementing hydrogen along with fossil or biofuels on internal combustion engines. Hydrogen is also being employed for formulating fuels such as hydrogen compressed natural gas in the gaseous form and hydrogenated biofuels in the liquid form. The present study evaluates (i) hydrogen usage on the fuel formulation and (ii) investigates the engine operation of an automotive turbocharged diesel engine operated with karanja biodiesel blended diesel (B20) as a reference fuel. Existing literature outlines that biodiesel blends possess lower energy content and emit higher nitric oxide (NO) emission than fossil diesel. The present research paper partially hydrogenates karanja biodiesel using an autoclave reactor with a palladium catalyst to increase the saturation levels and mitigate the biodiesel-NO penalty. Besides, the drop in energy release of B20 is compensated through the provision of hydrogen induction along the intake manifold. The hydrogen flow rates to the turbocharged engine are maintained at a fixed energy share of 10%. Both biodiesel and hydrogenated biodiesel were blended on a volume basis (20%) with fossil diesel (80%) and are designated as B20 and HB20, respectively. The test results reveal that HB20 effectively mitigates the biodiesel-NO penalty with a maximum reduction of 29.8% compared to B20. Further, hydrogen induction yielded a significant improvement (23.7%) in fuel consumption with HB20 relative to B20 without hydrogen addition. The compounding effect of hydrogen usage on the engine operation and fuel formulation exhibited a better performance and emission trade-off at mid load conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号