首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This study was conducted to investigate the properties of hydrolysates obtained from acid and alkali hydrolysis and to evaluate the feasibility of employing them for bio-hydrogen production. High sugar concentrations of 16.8 g/L and 13.3 g/L were present in 0.5% and 1.0% H2SO4 hydrolysates, respectively. However, H2SO4 hydrolysis resulted in large amounts of short-chain fatty acids (SCFAs) and furan derivatives, which were removed by detoxification. In bio-hydrogen production, 1.0% H2SO4 hydrolysate showed a 55.6 mL of highest hydrogen production and 1.14 mol-H2/mol-hexose equivalentadded of hydrogen yield. In control and 1.0% NaOH hydrolysate, 29.7 mL and 36.9 mL of hydrogen were produced, respectively. Interestingly, relatively high acetate and butyrate production resulted in lactate reduction. Also, NH4OH hydrolysate produced less than 10 mL of hydrogen. Thus, these results indicate that hydrogen production and metabolite distribution can vary depending on the sugars and by-product composition in the hydrolysate.  相似文献   

2.
In this work, a carbohydrate-rich microalga, Chlorella vulgaris ESP6, was grown photoautotrophically to fix the CO2. The resulting microalgal biomass was hydrolyzed by acid or alkaline/enzymatic treatment and was then used for biohydrogen production with Clostridium butyricum CGS5. The C. vulgaris biomass could be effectively hydrolyzed by acid pretreatment while similar hydrolysis efficiency was achieved by combination of alkaline pretreatment and enzymatic hydrolysis. The biomass of C. vulgaris ESP6 containing a carbohydrate content of 57% (dry weight basis) was efficiently hydrolyzed by acid treatment with 1.5% HCl, giving a reducing sugars (RS) yield of nearly 100%. C. butyricum CGS5 could utilize RS from C. vulgaris ESP6 biomass to produce hydrogen without any additional organic carbon sources. The optimal conditions for hydrogen production were 37 °C and a microalgal hydrolysate loading of 9 g RS/L with pH-controlled at 5.5. Under the optimal conditions, the cumulative H2 production, H2 production rate, and H2 yield were 1476 ml/L, 246 ml/L/h, and 1.15 mol/mol RS, respectively. The results demonstrate that the C. vulgaris biomass has the potential to serve as effective feedstock for dark fermentative H2 production.  相似文献   

3.
In lignocellulose-to-hydrogen bioconversion, reducing the concentration of chemical agents in pretreatment is of great interest. In this study, rice straw (RS) pretreated at reduced NaOH and urea (NU) concentrations was evaluated. Results showed that the composition of RS exhibited excellent pretreatment performance at a reduced concentration of NU. When the concentration of NaOH was decreased to 3 wt% in combination with 6 wt% urea, the lignin was reduced by 59.52% with a cellulose and hemicellulose loss of less than 17%. Moreover, extending the pretreatment time at a low concentration of NU could effectively promote the biodegradability of RS. Upon fermentation by Thermoanaerobacterium thermosaccharolyticum M18 for H2 production, the H2 production increased up to 213.06 mL/g with a substrate treated by 3 wt% NaOH/6 wt% urea at low solid loading for 15 d, which was 16.31% higher than the counterpart subjected to a 7 wt% NaOH/12 wt% urea pretreatment. The present results suggest the NU pretreatment can be carried out at low concentrations to improve the conversion of RS into bio-H2 production.  相似文献   

4.
This work evaluated the effects of individual alkaline, sodium carbonate (Na2CO3 denoted as; NaC), sodium sulfide (Na2SO3 denoted as; NaS) and combination of NaC + NaS pretreatment for the saccharification of sugarcane bagasse (SCB). The effects of different pretreatments on chemical composition and structural complexity of SCB in relation with its saccharification were investigated. For enzymatic hydrolysis of pretreated SCB we have utilized the produced crude enzymes by Streptomyces sp. MDS to make the process more cost effective. A enzyme dose of 30 filter paperase (FPU) produced a maximum reducing sugar (RS) 592 mg/g with 80.2% hydrolysis yield from NaC + NaS pretreated SCB under optimized conditions. The resulted enzymatic hydrolysates of each pretreated SCB were applied for hydrogen production using Clostridium beijerinckii KCTC1785. NaC + NaS pretreated SCB hydrolysates exhibited maximum H2 production relative to other pretreatment methods. Effects of temperature, initial pH of culture media and increasing NaC + NaS pretreated SCB enzymatic hydrolysates concentration (2.5–15 g/L) on bioH2 production were investigated. Under the optimized conditions, the cumulative H2 production, H2 production rate, and H2 yield were 1485 mL/L, 61.87 mL/L/h and 1.24 mmol H2/mol of RS (0.733 mmol H2/g of SCB), respectively. The efficient conversion of the SCB hydrolysate to H2 without detoxification proves the viability of process for cost-effective hydrogen production.  相似文献   

5.
Hydrogen production from Arthrospira (Spirulina) platensis wet biomass through heterofermentation by the [FeFe] hydrogenase of hydrogenogens (hydrogen-producing bacteria) and autofermentation by the [NiFe] hydrogenase of Arthrospira platensis was discussed under dark anaerobic conditions. In heterofermentation, wet cyanobacterial biomass without pretreatment was hardly utilized by hydrogenogens for hydrogen production. But the carbohydrates in cyanobacterial cells released after cell wall disruption were effectively utilized by hydrogenogens for hydrogen production. Wet cyanobacterial biomass was pretreated with boiling and bead milling, ultrasonication, and ultrasonication and enzymatic hydrolysis. Wet cyanobacterial biomass pretreated with ultrasonication and enzymatic hydrolysis achieved the maximum reducing sugar yield of 0.407 g/g-DW (83.0% of the theoretical reducing sugar yield). Different concentrations (10 g/l to 40 g/l) of pretreated wet cyanobacterial biomass were used as substrate to produce fermentative hydrogen by hydrogenogens, which were domesticated with the pretreated wet cyanobacterial biomass as carbon source. The maximum hydrogen yield of 92.0 ml H2/g-DW was obtained at 20 g/l of wet cyanobacterial biomass. The main soluble metabolite products (SMPs) in the residual solutions from heterofermentation were acetate and butyrate. In autofermentation, hydrogen yield decreased from 51.4 ml H2/g-DW to 11.0 ml H2/g-DW with increasing substrate concentration from 1 g/l to 20 g/l. The main SMPs in the residual solutions from autofermentation were acetate and ethanol. The hydrogen production peak rate and hydrogen yield at 20 g/l of wet cyanobacterial biomass in heterofermentation showed 110- and 8.4-fold increases, respectively, relative to those in autofementation.  相似文献   

6.
Pretreatment of sweet sorghum bagasse, an energy crop residue, with NaOH for the production of fermentable substrates, was investigated. Optimal conditions for the alkaline pretreatment of sweet sorghum bagasse were realized at 10% NaOH (w/w dry matter). A delignification of 46% was then observed, and improved significantly the efficiency of enzymatic hydrolysis. Under hydrolysis conditions without pH control, up to 50% and 41% of the cellulose and hemicellulose contained in NaOH-pretreated sweet sorghum bagasse were converted by 24 h enzymatic hydrolysis to soluble monomeric sugars. The extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus showed normal growth on hydrolysates of NaOH-pretreated biomass up to a sugar concentration of 20 g/L. Besides hydrogen, the main metabolic products detected in the fermentations were acetic and lactic acid. The maximal hydrogen yield observed in batch experiments under controlled conditions was 2.6 mol/mol C6 sugar. The maximal volumetric hydrogen production rate ranged from 10.2 to 10.6 mmol/(L h). At higher substrate concentrations the production of lactic acid increased at the expense of hydrogen production.  相似文献   

7.
Hydrogen gas was produced via dark fermentation from natural cellulosic materials and α-cellulose via a two-step process, in which the cellulosic substrates were first hydrolyzed by an isolated cellulolytic bacterium Clostridium strain TCW1, and the resulting hydrolysates were then used as substrate for fermentative H2 production. The TCW1 strain was able to hydrolyze all the cellulosic materials examined to produce reducing sugars (RS), attaining the best reducing sugar production yield of 0.65 g reducing sugar/g substrate from hydrolysis of α-cellulose. The hydrolysates of those cellulosic materials were successfully converted to H2 via dark fermentation using seven H2-producing bacterial isolates. The bioH2 production performance was highly dependent on the type of cellulosic feedstock used, the initial reducing sugar concentration (CRS,o) (ranging from 0.7 to 4.5 mg/l), as well as the composition of sugar and soluble metabolites present in the cellulosic hydrolysates. It was found that Clostridium butyricum CGS5 displayed the highest H2-producing efficiency with a cumulative H2 production of 270 ml/l from α-cellulose hydrolysate (CRS,o = 4.52 mg/l) and a H2 yield of 7.40 mmol/g RS (or 6.66 mmol/g substrate) from napier grass hydrolysate (CRS,o = 1.22 g/l).  相似文献   

8.
Feasibility of hydrogen production from acid and enzymatic oat straw hydrolysates was evaluated in an anaerobic sequencing batch reactor at 35 °C and constant substrate concentration (5 g chemical oxygen demand/L). In a first experiment, hydrogen production was replaced by methane production. Selective pressures applied in a second experiment successfully prevented methane production. During this experiment, initial feeding with glucose/xylose, as model substrates, promoted biomass granulation. Also, the highest hydrogen molar yield (HMY, 2 mol H2/mol sugar consumed) and hydrogen production rate (HPR, 278 mL H2/L-h) were obtained with these model substrates. Gradual substitution of glucose/xylose by acid hydrolysate led to disaggregation of granules and lower HPR and HMY. When the model substrates were completely substituted by enzymatic hydrolysate, the HMY and HPR were 0.81 mol H2/mol sugar consumed and 29.6 mL H2/L-h, respectively. Molecular analysis revealed a low bacterial diversity in the stages with high hydrogen production and vice versa. Furthermore, Clostridium pasteurianum was identified as the most abundant species in stages with a high hydrogen production. Despite that feasibility of hydrogen production from hydrolysates was demonstrated, lower performance from hydrolysates than from model substrates was obtained.  相似文献   

9.
The potential of wastes obtained from the cultivation of Manihot esculenta Crantz as raw material for bioethanol production was studied. The objective was to determine the optimal conditions of hemicellulose thermohydrolysis of cassava stems and peelings and evaluate their impact on the enzymatic hydrolysis yield of cellulose. An experimental design was conducted to model the influence of factors on the pentose, reducing sugar and phenolic compound contents. Residues obtained from the optimal pretreatment conditions were hydrolysed with cellulase (filter paper activity 40 FPU/g). The hydrolysates from pretreatment and enzymatic hydrolysis were fermented respectively using Rhyzopus spp. and Sacharomyces cerevisiae. The yield of enzymatic hydrolysis obtained under the optimal conditions were respectively 73.1% and 86.6% for stems and peelings resulting in an increase of 39.84% and 55.40% respectively as compared to the non-treated substrates. The ethanol concentrations obtained after fermentation of enzymatic hydrolysates were 1.3 and 1.2 g/L respectively for the stem and peeling hydrolysates. The pentose and phenolic compound concentrations obtained from the multi-response optimization were 10.2 g/L; 0.8 g/L and 10.1 g/L; 1.3 g/L respectively for stems and peelings. The hydrolysates of stems and peelings under these optimal conditions respectively gave ethanol concentrations of 5.27 g/100 g for cassava stems and 2.6 g/100 g for cassava peelings.  相似文献   

10.
This study presents the production of biohydrogen from rice mill wastewater. The acid hydrolysis and enzymatic hydrolysis operating conditions were optimized, for better reducing sugar production. The effect of pH and fermentation time on biohydrogen production from acid and enzymatic hydrolyzed rice mill wastewater was investigated, using Enterobacter aerogenes and Citrobacter ferundii. The enzymatic hydrolysis produced the maximum reducing sugar (15.8 g/L) compared to acid hydrolysis (14.2 g/L). The growth data obtained for E. aerogenes and C. ferundii, fitted well with the Logistic equation. The hydrogen yields of 1.74 mol H2/mol reducing sugar, and 1.40 mol H2/mol reducing sugar, were obtained from the hydrolyzate obtained from enzymatic and acid hydrolysis, respectively. The maximum hydrogen yield was obtained from E. aerogenes compared to C. ferundii, and the optimum pH for better hydrogen production was found to be in the range from 6.5 to 7.0. The chemical oxygen demand (COD) reduction obtained was around 71.8% after 60 h of fermentation.  相似文献   

11.
Cryptococcus curvatus has great potential in fermenting unconditioned hydrolysates of sweet sorghum bagasse. With hydrolysates obtained by enzymatic hydrolysis of the solid pretreated by microwave with lime, the maximal yeast cell dry weight and lipid content were 10.83 g/l and 73.26%, respectively. For hydrolysates obtained in the same way but without lime, these two parameters were 15.50 g/l and 63.98%, respectively. During yeast fermentation, glucose and xylose were consumed simultaneously while cellobiose was released from the residual bagasse. The presence of lime, on one hand, made cellulose more accessible to enzymes as evidenced by higher total reducing sugar release compared to that without during enzymatic hydrolysis step; on the other hand, it caused the degradation of sugars to non-sugar chemicals during pretreatment step. As a result, higher lipid yield of 0.11 g/g bagasse or 0.65 ton/hectare of land was achieved from the pathway of microwave pretreatment and enzymatic hydrolysis while 0.09 g/g bagasse or 0.51 ton/hectare of land was attained from the process of lime-assisted microwave pretreatment followed by the same enzymatic saccharification.  相似文献   

12.
Corn cob is a promising hydrogen fermentation substrate, not only because of its abundant and low cost, but also because of its high cellulose and hemicellulose content. However, little information is available on the use of corn cob as a feedstock for hydrogen production. In this study, corn cob was hydrolyzed by cellulase after acid steam-explosion, alkali soaking, or steam-explosion pretreatment. The liquid products of pretreatment and the enzymatic hydrolysates were then used as carbon sources for hydrogen production by Clostridium hydrogeniproducens HR-1. Pretreatment followed by enzymatic hydrolysis yielded 720, 670, and 530 mg reducing sugars/g corn cob, and the hydrogen yield from corn cob reached 119, 100, and 83 ml H2/g corn cob, which is 55.9%, 46.7%, and 38.8% of the theoretical hydrogen yield from corn cob using C. hydrogeniproducens HR-1, respectively.  相似文献   

13.
Treated ricebran hydrolysate was fermented anaerobically using Clostridium saccharoperbutylacetonicum N1-4 at an initial pH of 6 ± 0.2 and an operating temperature of 30 °C for production of hydrogen. The effects of different pretreatment methods on the liberation of sugar from 100 g of ricebran per litre of medium (distilled water) were investigated. In addition, the effects of the pretreatment method on ricebran hydrolysates of different initial ricebran concentrations on liberated sugar as well as the effects of the initial inoculum concentration, ricebran (substrate) concentration, and FeSO4·7H2O concentration on the yield as well as the productivity of hydrogen were investigated. The combination of enzymatic hydrolysis and a boiling pretreatment method produced the most fermentable sugar, 29.03 ± 0.0 g/L from 100 g of ricebran per litre of medium (distilled water), while the amount of sugar liberated by ricebran hydrolysates of different initial ricebran concentrations upon pretreatment monotonically increased with the initial ricebran concentration. The increment in substrate, inoculum, and FeSO4·7H2O concentrations had a significantly positive effect (p < 0.05) on both the yield and productivity of hydrogen. The maximum hydrogen gas yield (YP/S) and productivity of 3.37 mol-H2 per mol-sugar consumed and 7.58 mmol/(L h), respectively, were obtained from ricebran hydrolysate with a 100 g/L ricebran concentration (equivalent to 28.59 ± 1.27 g sugar/L). In other experiments, 0.03 g/L FeSO4·7H2O and 1.5 g/L inoculum resulted in the best hydrogen gas yield and productivity from ricebran hydrolysates.  相似文献   

14.
Cheese whey (CW) was subjected to DC voltages between 0.5 and 5 V for hydrogen gas production with simultaneous COD removal by electrohydrolysis of CW organics. Hydrogen gas formation and COD removal were investigated at different DC voltages using aluminum electrodes. The highest cumulative hydrogen production (5551 mL), hydrogen yield (1709 mL H2 g−1 COD), hydrogen gas formation rate (913 ml d−1), and percent hydrogen (99%) in the gas phase were obtained with 5 V DC voltage within 158 h. Energy conversion efficiency reached the highest level (80.7%) at 3 V DC voltage with cumulative hydrogen production of 4808 mL and hydrogen yield of 1366 mL H2 g−1 COD. Hydrogen gas was mainly produced by electrohydrolysis of CW organics due to low H2 gas production in water and CW control experiments. The highest COD removal (22%) was also obtained with 3 V DC voltage. Major COD removal mechanism was anaerobic degradation of carbohydrates producing volatile fatty acids (VFA) and CO2. Hydrogen gas was produced by reaction of protons released from VFAs and electrons provided by DC current. Hydrogen gas production by electrohydrolysis of CW solution was proven to be an effective method with simultaneous COD removal.  相似文献   

15.
In the present work, agave bagasse enzymatic hydrolysates obtained with newly locally-available commercial enzymatic preparations were explored for their corresponding hydrogen and methane production potential in batch mode. The major levels in chemical oxygen demand and total carbohydrates were provided by enzymatic hydrolysates made with Zymapect and Stonezyme, respectively. Batch experiments demonstrated that Celluclast 1.5L achieves the maximum hydrogen productivity (1.88 L H2/L), from 1.6 to 2.0-fold higher than other alternatives, whereas Zymapect attains the highest methane productivity (1.32 L CH4/L), with high specific yield reached by both Stonezyme and Zymapect (162 and 163 L CH4/kg bagasse), from 1.7 to 2.0-fold higher than other options. Finally, a preliminary techno-economic analysis allowed to elucidate that the cheapest alternatives for hydrogen and methane production at batch scale are Celluclast 1.5L and Stonezyme, respectively. Overall, the present analysis could serve as groundwork for the selection of the best enzymatic alternatives for hydrogen and methane production.  相似文献   

16.
Bio-hydrogen (H2) production from renewable biomass has been accepted as a promising method to produce an alternative fuel for the future. In this study, fermentative hydrogen production from cornstalk (CS) hydrolysate pretreated by alkaline-enzymolysis method was investigated. Meanwhile, a five-factor and five-level orthogonal experimental array was designed to study the influences of Ca(OH)2 concentration, alkaline hydrolysis time, alkaline hydrolysis temperature, cellulase and xylanase dosages on cornstalk pretreatment and hydrogen production. A maximum reducing sugar yield of 0.59 g/g-CS was obtained at Ca(OH)2 0.5%, hydrolysis temperature 115 °C, hydrolysis time 1.5 h, cellulase dosage 4000 U/g-CS and xylanase 4000 U/g-CS. Under this same condition, the maximum hydrogen yields of 168.9 mL/g-CS, 357.6 mL/g-CS, and 424.3 mL/g-CS were obtained at dark-fermentation, photo-fermentation, and two-stage fermentation respectively. It's also found that the significance of these five parameters on H2 production followed from high to low order as: Ca(OH)2 concentration, cellulase dosage, xylanase dosage, hydrolysis time, and hydrolysis temperature. By comparing the energy produced with the energy spent, the maximum Energy Sustainability Index (ESI) value of 1.11 was obtained at the two-stage fermentation. The results suggested that two-stage fermentation is a promising and efficient way for hydrogen production from lignocellulosic biomass.  相似文献   

17.
The effect of culture parameters on hydrogen production using strain GHL15 in batch culture was investigated. The strain belongs to the genus Thermoanaerobacter with 98.9% similarity to Thermoanaerobacter yonseiensis and 98.5% to Thermoanaerobacter keratinophilus with a temperature optimum of 65–70 °C and a pH optimum of 6–7. The strain metabolizes various pentoses, hexoses, and disaccharides to acetate, ethanol, hydrogen, and carbon dioxide. However substrate inhibition was observed above 10 mM glucose concentration. Maximum hydrogen yields on glucose were 3.1 mol H2 mol−1 glucose at very low partial pressure of hydrogen. Hydrogen production from various lignocellulosic biomass hydrolysates was investigated in batch culture. Various pretreatment methods were examined including acid, base, and enzymatic (Celluclast® and Novozyme 188) hydrolysis. Maximum hydrogen production (5.8–6.0 mmol H2 g−1 dw) was observed from Whatman paper (cellulose) hydrolysates although less hydrogen was produced by hydrolysates from other examined lignocellulosic materials (maximally 4.83 mmol H2 g−1 dw of grass hydrolysate). The hydrogen yields from all lignocellulosic hydrolysates were improved by acid and alkaline pretreatments, with maximum yields on grass, 7.6 mmol H2 g−1 dw.  相似文献   

18.
Cornstalk is a typical cellulose material, which can be used by photo-fermentative H2 production after pretreatment. However, the pretreatment methods have different influence on photo fermentation. In this study, 25.0 g cornstalk was pretreated by HCl/NaOH/cellusase. The hydrolysis rates increased from 45.51% by ddH2O-treatment to 60.79% by diluted HCl-treatment and 51.6% by NaOH-treatment. The corresponding reducing sugar yields were 0.13 g/g, 0.42 g/g and 0.01 g/g, respectively. Enzymatic treatment enhanced the corresponding cornstalk hydrolysis rates to 50.81%, 67.60% and 64.10% with reducing sugar yields of 0.22 g/g, 0.62 g/g and 0.26 g/g. The sorts and concentrations of carbon source for H2 production vary among different hydrolysates. Photo-fermentative H2 production of strain R. capsulatus JL1 and mutant JL1601 (cheR2-) with hydrolysates were investigated. The maximum H2 yield of 123.8 ± 14.2 mL/g by strain JL1 was obtained from alkali-enzyme pretreated cornstalk, while the H2 yield of 224.9 ± 5.2 mL/g by mutant JL1601 (cheR2-) was obtained with acid-enzyme hydrolysate as the substrates. Meanwhile, the alkali pretreated cornstalk was the worst for photo-fermentation of both strain JL1 and mutant JL1601 (cheR2-). Nevertheless, the highest substrate conversion efficiencies for both strains were obtained from ddH2O-pretreated hydrolysate. Two-step pretreated hydrolysates were more beneficial to H2 production for mutant JL1601 (cheR2-) but not for strain JL1.  相似文献   

19.
The composition, biodegradability, abundance, availability and cost determine the amenability of carbonaceous substrate for fermentative hydrogen and methane production systems. The aim of the present work was to determine suitability of lignocellulosic material, reed canary grass (RCG) (Phalaris arundinacea L.), for hydrogen and methane production at 35 °C by utilizing solid RCG and acid hydrolyzed soluble RCG. Synthetic cellulose was used as control substrate. Acid hydrolysis released 61.7 mg g−1 (dw) and 115 mg g−1 (dw) of reducing sugars from synthetic cellulose and chopped RCG, respectively. More hydrogen was produced from acid hydrolyzed RCG than from solid RCG, the highest yield being 1.25 mmol H2 per g (dw) RCG. Methane production from solid RCG resulted in the highest yield of 8.26 mmol CH4 per g (dw) RCG. In summary hydrogen and methane was produced from RCG, and acid hydrolysis was required for hydrogen, but not for methane production.  相似文献   

20.
This article discusses the method of producing hydrogen from water hyacinth. Water hyacinth was pretreated with microwave heating and alkali to enhance the enzymatic hydrolysis and hydrogen production in a two-step process of dark- and photo- fermentation. Water hyacinth with various concentrations of 10–40 g/l was pretreated with four methods: (1) steam heating; (2) steam heating and microwave heating/alkali pretreatment; (3) steam heating and enzymatic hydrolysis; (4) steam heating, microwave heating/alkali pretreatment and enzymatic hydrolysis. Water hyacinth (20 g/l) pretreated with method 4 gave the maximum reducing sugar yield of 30.57 g/100 g TVS, which was 45.6% of the theoretical reducing sugar yield (67.0 g/100 g TVS). The pretreated water hyacinth was used to produce hydrogen by mixed H2-producing bacteria in dark fermentation. The maximum hydrogen yield of 76.7 ml H2/g TVS was obtained at 20 g/l of water hyacinth. The residual solutions from dark fermentation (mainly acetate and butyrate) were used to further produce hydrogen by immobilized Rhodopseudomonas palustris in photo fermentation. The maximum hydrogen yield of 522.6 ml H2/g TVS was obtained at 10 g/l of water hyacinth. Through a combined process of dark- and photo- fermentation, the maximum hydrogen yield from water hyacinth was dramatically enhanced from 76.7 to 596.1 ml H2/g TVS, which was 59.6% of the theoretical hydrogen yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号