共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2022,47(43):18748-18762
During the past decade, Prognostics and Health Management (PHM) has become an important set of tools in various areas of industry and academic reliability engineering. PHM consists of a variety of mathematical and computational methods used to support data-driven decision-making to increase the safety, availability, and reliability of complex engineering systems. In particular, PHM can provide crucial insight into reliability and safety design improvements for developing technologies where historical performance and failure data are limited. This is the case of hydrogen fueling and storage technologies. This work presents a high-level approach for designing data-driven PHM applications for bulk liquid hydrogen (LH2) storage systems for hydrogen fueling stations. This paper addresses core aspects of the design, development, and implementation of data-driven PHM applications that can improve the reliability assessment of hydrogen components. The analysis focuses on the relationship between data availability and diagnostic/prognostic capabilities; potential challenges; and integration schemes for current risk mitigation measures. We identify potential condition-monitoring data sources for key components in an LH2 storage system, including storage tanks, piping, and pumps. We determine that the short-term goals for the implementation of data-driven models in PHM frameworks in hydrogen systems should focus on developing adequate data collection and analysis strategies, as well as exploring the effect on reliability, safety, and regulations for hydrogen systems. 相似文献
2.
Mohammad Dadashzadeh Sergii Kashkarov Dmitriy Makarov Vladimir Molkov 《International Journal of Hydrogen Energy》2018,43(12):6462-6475
A quantitative risk assessment of onboard hydrogen-powered vehicle storage, exposed to a fire, is performed. The risk is defined twofold as a cost of human life per vehicle fire, and annual fatality rate per vehicle. The increase of fire resistance rating of the storage tank is demonstrated to drastically reduce the risk to acceptable level. Hazard distances are calculated by validated engineering tools for blast wave and fireball, which follow catastrophic tank rupture in a fire, act in all directions and have larger hazard distances compared to jet fire. The fatality cash value, probabilities of vehicle fire and failure of thermally activated pressure relief device are taken from published sources. A vulnerability probit function is employed to calculate probability of emergency operations' failure to control fire and prevent tank rupture. The risk is presented as a function of fire resistance rating of onboard storage. 相似文献
3.
In recent years, consumers calling for the protection of the environment on a regional and global scale are demanding the use of vehicles that do not emit harmful exhaust. It is anticipated that one response to this demand is the widespread use of fuel cell vehicles (FCVs). In order to achieve this, it is necessary to provide hydrogen fueling stations where FCVs can refuel. 相似文献
4.
Sandia National Laboratories is working with stakeholders to develop scientific data for use by standards development organizations to create hydrogen codes and standards for the safe use of liquid hydrogen. Knowledge of the concentration field and flammability envelope for high-pressure hydrogen leaks is an issue of importance for the safe use of liquid hydrogen. Sandia National Laboratories is engaged in an experimental and analytical program to characterize and predict the behavior of liquid hydrogen releases. This paper presents a model for computing hydrogen dilution distances for cold hydrogen releases. Model validation is presented for leaks of room temperature and 80 K high-pressure hydrogen gas. The model accounts for a series of transitions that occurs from a stagnate location in the tank to a point in the leak jet where the concentration of hydrogen in air at the jet centerline has dropped to 4% by volume. The leaking hydrogen is assumed to be a simple compressible substance with thermodynamic equilibrium between hydrogen vapor, hydrogen liquid and air. For the multi-phase portions of the jet near the leak location the REFPROP equation of state models developed by NIST are used to account for the thermodynamics. Further downstream, the jet develops into an atmospheric gas jet where the thermodynamics are described as a mixture of ideal gases (hydrogen–air mixture). Simulations are presented for dilution distances in under-expanded high-pressure leaks from the saturated vapor and saturated liquid portions of a liquid hydrogen storage tank at 10.34 barg (150 PSIG). 相似文献
5.
6.
José Miguel Pasini Claudio Corgnale Bart A. van Hassel Theodore Motyka Sudarshan Kumar Kevin L. Simmons 《International Journal of Hydrogen Energy》2013
The United States Department of Energy (DOE) has published a progression of technical targets to be satisfied by on-board rechargeable hydrogen storage systems in light-duty vehicles. By combining simplified storage system and vehicle models with interpolated data from metal hydride databases, we obtain material-level requirements for metal hydrides that can be assembled into systems that satisfy the DOE targets for 2017. We assume minimal balance-of-plant components for systems with and without a hydrogen combustion loop for supplemental heating. Tank weight and volume are driven by the stringent requirements for refueling time. The resulting requirements suggest that, at least for this specific application, no current on-board rechargeable metal hydride satisfies these requirements. 相似文献
7.
C. San Marchi E.S. Hecht I.W. Ekoto K.M. Groth C. LaFleur B.P. Somerday R. Mukundan T. Rockward J. Keller C.W. James 《International Journal of Hydrogen Energy》2017,42(11):7263-7274
Hydrogen fuels are being deployed around the world as an alternative to traditional petrol and battery technologies. As with all fuels, regulations, codes and standards are a necessary component of the safe deployment of hydrogen technologies. There has been a focused effort in the international hydrogen community to develop codes and standards based on strong scientific principles to accommodate the relatively rapid deployment of hydrogen-energy systems. The need for science-based codes and standards has revealed the need to advance our scientific understanding of hydrogen in engineering environments. This brief review describes research and development activities with emphasis on scientific advances that have aided the advancement of hydrogen regulations, codes and standards for hydrogen technologies in four key areas: (1) the physics of high-pressure hydrogen releases (called hydrogen behavior); (2) quantitative risk assessment; (3) hydrogen compatibility of materials; and (4) hydrogen fuel quality. 相似文献
8.
One option to transport hydrogen over longer distances in the future is via Liquid Organic Hydrogen Carriers (LOHC). They can store 6.2 wt% hydrogen by hydrogenation. The most promising LOHCs are toluene and dibenzyltoluene. However, for the dehydrogenation of the LOHCs – to release the hydrogen again – temperatures above 300 °C are needed, leading to a high energy demand. Therefore, a Life Cycle Assessment (LCA) and Life Cycle Costing are conducted. Both assessments concentrate on the whole life cycle rather than just direct emissions and investments. In total five different systems are analysed with the major comparison between conventional transport of hydrogen in a liquefied state of matter and LOHCs. Variations include electricity supply for liquefaction, heat supply for dehydrogenation and the actual LOHC compound. The results show that from an economic point of view transport via LOHCs is favourable while from an environmental point of view transport of liquid hydrogen is favourable. 相似文献
9.
《International Journal of Hydrogen Energy》2023,48(75):29367-29390
Airlines are faced with the challenge of reducing their environmental footprint in an effort to push for climate-neutral initiatives that comply with international regulations. In the past, the aviation industry has followed the approach of incremental improvement of fuel efficiency while simultaneously experiencing significant growth in annual air traffic. With the increase in air traffic negating any reduction in Greenhouse Gas (GHG) emissions, more disruptive technologies such as hydrogen-based onboard power generation are required to reduce the environmental impact of airline operations. However, despite initial euphoria and first conceptual studies for hydrogen-powered aircraft several decades ago, there still has been no mass adoption to this day. Besides the challenges of a suitable ground infrastructure, this can partly be attributed to uncertainties with the associated maintenance requirements and the expected operating costs to demonstrate the economic viability of this technology. With this study, we address this knowledge gap by estimating changes towards scheduled maintenance activities for an airborne hydrogen storage and distribution system. In particular, we develop a detailed system design for a hydrogen-powered, fuel-cell-based auxiliary power generation and perform a comparative analysis with an Airbus A320 legacy system. That analysis allows us to (a) identify changes for the expected maintenance effort to enhance subsequent techno-economic assessments, (b) identify implications of specific design assumptions with corresponding maintenance activities while ensuring regulatory compliance and (c) describe the impact on the resulting task execution. The thoroughly examined interactions between system design and subsequent maintenance requirements of this study can support practitioners in the development of prospective hydrogen-powered aircraft. In particular, it allows the inclusion of maintenance implications in early design stages of corresponding system architectures. Furthermore, since the presented methodology is transferable to different design solutions, it provides a blueprint for alternative operating concepts such as the complete substitution of kerosene by hydrogen to power the main engines. 相似文献
10.
R.K. Ahluwalia T.Q. Hua J.-K. Peng S. Lasher K. McKenney J. Sinha M. Gardiner 《International Journal of Hydrogen Energy》2010
On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H2 to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2–4 and 1.6–2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials. 相似文献
11.
《International Journal of Hydrogen Energy》2019,44(40):22643-22653
Composite tanks for on-board gaseous hydrogen storage is one of key parts of the hydrogen fuel cell vehicle. Regulations, codes and standards (RC & S) are conducive to overcoming technological barriers to commercialization. This paper reviews the development of RC & S on composite tanks for on-board gaseous hydrogen storage and addresses their highlights on technical requirements. First, an overview of RC & S for composite tanks is introduced. Then, a comparative study on technical requirements of RC & S including service conditions, design requirements, materials, manufacture, qualification tests and management is presented. Finally, several major differences in RC & S, i.e., tank classification in ISO 19881 and penetration test method are discussed. Some issues for further research, such as initial burst pressure, material hydrogen compatibility and periodic inspection methods are proposed. 相似文献
12.
Leading physical and materials-based hydrogen storage options are evaluated for their potential to meet the vehicular targets for gravimetric and volumetric capacity, cost, efficiency, durability and operability, fuel purity, and environmental health and safety. Our analyses show that hydrogen stored as a compressed gas at 350–700 bar in Type III or Type IV tanks cannot meet the near-term volumetric target of 28 g/L. The problems of dormancy and hydrogen loss with conventional liquid H2 storage can be mitigated by deploying pressure-bearing insulated tanks. Alane (AlH3) is an attractive hydrogen carrier if it can be prepared and used as a slurry with >50% solids loading and an appropriate volume-exchange tank is developed. Regenerating AlH3 is a major problem, however, since it is metastable and it cannot be directly formed by reacting the spent Al with H2. We have evaluated two sorption-based hydrogen storage systems, one using AX-21, a high surface-area superactivated carbon, and the other using MOF-177, a metal-organic framework material. Releasing hydrogen by hydrolysis of sodium borohydride presents difficult chemical, thermal and water management issues, and regenerating NaBH4 by converting B–O bonds is energy intensive. We have evaluated the option of using organic liquid carriers, such as n-ethylcarbazole, which can be dehydrogenated thermolytically on-board a vehicle and rehydrogenated efficiently in a central plant by established methods and processes. While ammonia borane has a high hydrogen content, a solvent that keeps it in a liquid state needs to be found, and developing an AB regeneration scheme that is practical, economical and efficient remains a major challenge. 相似文献
13.
As part of the US Department of Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program, Sandia National Laboratories is developing the technical basis for assessing the safety of hydrogen-based systems for use in the development/modification of relevant codes and standards. This work includes quantitative risk assessments (QRA) of hydrogen facilities. The QRAs are used to identify and quantify scenarios for the unintended release of hydrogen and thus help identify the code requirements that would reduce the risk at hydrogen facilities to acceptable levels. 相似文献
14.
Byeong Soo Shin Chang Won Yoon Sang Kyu Kwak Jeong Won Kang 《International Journal of Hydrogen Energy》2018,43(27):12158-12167
Liquid organic hydrogen carriers (LOHCs) are promising candidates for storage and transport of renewable energy due to their reversible reaction characteristics. For the proper assessment of candidate molecules, various thermochemical properties are required, and significant experimental efforts are necessary. In this work, we suggest a systematic method for the estimation of thermochemical properties for LOHC candidate molecules combining Density Functional Theory (DFT) calculations, Conductor-like Screening Model (COSMO) and Molecular Dynamics (MD) simulations. We applied the suggested method for the assessment of previously reported LOHC materials. Based on the analysis, new candidates of carbazole-derivative compounds (N-acetylcarbazole, N-phenylcarbazole, N-benzoylcarbazole, and 4-methyl-4H-benzocarbazole) are suggested, and their properties are estimated and reviewed. Calculation results show that these candidates can provide high theoretical hydrogen uptake capacities above 6 wt% and optimal heats of dehydrogenation in the liquid phase. Analysis on the stereoisomerism showed that the structure-selectivity toward less stable stereoisomers of the hydrogen-rich form is preferable for the dehydrogenation process. 相似文献
15.
16.
《International Journal of Hydrogen Energy》2019,44(2):1288-1298
Hydrogen is one of important energy source in the next generation of renewable energy. It has powerful strength such as no emission from CO2 for fuel, Nevertheless, many countries have difficulties to expand hydrogen infra due to high risky from hydrogen. Especially, the hydrogen refueling station which is located in urban area has congested structure and high population around, it has higher risk than conventional refueling station. This paper presents a quantitative risk assessment (QRA) of a high pressure hydrogen refueling station in an urban area with a large population and high congestion between the instruments and equipment. The results show that leaks from the tube-trailer and dispenser as well as potential explosion of the tube-trailer are the main risks. For the safety of the station operator, customers and people surrounding the refueling station, additional mitigation plans such as adding additional safety barrier system have to be implemented on the compressor and dispenser in order to prevent continuous release of hydrogen from an accident. 相似文献
17.
Andrei Rodionov Heinz WilkeningPietro Moretto 《International Journal of Hydrogen Energy》2011,36(3):2398-2406
The aim of the study is to identify and quantify the additional risks related to hydrogen explosions during the operation of a hydrogen-driven car. In a first attempt the accidents or failures of a simple one-tank hydrogen storage system have been studied as a main source of risk. Three types of initiators are taken into account: crash accidents, fire accidents without crash (no other cars are involved) and hydrogen leakages in normal situation with following ignition. The consequences of hydrogen ignition and/or explosion depend strongly on environmental conditions (geometry, wind, etc.), therefore the different configurations of operational and environmental conditions are specified.Then Event Tree/Fault Tree methods are applied for the risk assessment.The results of quantification permit to draw conclusions about the overall added risk of hydrogen technology as well as about the main contributors to the risk. Results of this work will eventually contribute to the on-going pre-normative research in the field of hydrogen safety. 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(40):17845-17858
The wider adoption of hydrogen in multiple sectors of the economy requires that safety and risk issues be rigorously investigated. Quantitative Risk Assessment (QRA) is an important tool for enabling safe deployment of hydrogen fueling stations and is increasingly embedded in the permitting process. QRA requires reliability data, and currently hydrogen QRA is limited by the lack of hydrogen specific reliability data, thereby hindering the development of necessary safety codes and standards [1]. Four tools have been identified that collect hydrogen system safety data: H2Tools Lessons Learned, Hydrogen Incidents and Accidents Database (HIAD), National Renewable Energy Lab's (NREL) Composite Data Products (CDPs), and the Center for Hydrogen Safety (CHS) Equipment and Component Failure Rate Data Submission Form. This work critically reviews and analyzes these tools for their quality and usability in QRA. It is determined that these tools lay a good foundation, however, the data collected by these tools needs improvement for use in QRA. Areas in which these tools can be improved are highlighted, and can be used to develop a path towards adequate reliability data collection for hydrogen systems. 相似文献
19.
Increasing scarcity of fossil fuels makes the deployment of hydrogen in combination with renewable energy sources, nuclear energy or the utilization of electricity from full time operation of existing power stations an interesting alternative. A pre-requisite is, however, that the safety of the required infrastructure is investigated and that its design is made such that the associated risk is at least not higher than that of existing supplies. Therefore, a risk analysis considering its most important objects such as storage tanks, filling stations, vehicles as well as heating and electricity supplies for residential buildings was carried out. The latter are considered as representative of the entire infrastructure. The study is based on fault and event tree analyses, wherever required, and consequence calculations using the PHAST code. The procedure for evaluating the risk and corresponding results are presented taking one of the objects as an example. 相似文献
20.
《International Journal of Hydrogen Energy》2023,48(7):2861-2875
Hydrogen energy storage systems are expected to play a key role in supporting the net zero energy transition. Although the storage and utilization of hydrogen poses critical risks, current hydrogen energy storage system designs are primarily driven by cost considerations to achieve economic benefits without safety considerations. This paper aims to study the safety of hydrogen storage systems by conducting a quantitative risk assessment to investigate the effect of hydrogen storage systems design parameters such as storage size, mass flow rate, storage pressure and storage temperature. To this end, the quantitative risk assessment procedure, which includes data collection and hazard identification, frequency analysis, consequence analysis and risk analysis, was carried out for the hydrogen storage system presented in a previous study [1]. In the consequence analysis, the Millers model and TNO multi-energy were used to model the jet fire and explosion hazards, respectively. The results show that the storage capacity and pressure have the greatest influence on the hydrogen storage system risk assessment. More significantly, the design parameters may affect the acceptance criteria based on the gaseous hydrogen standard. In certain cases of large storage volume or high storage pressure, risk mitigation measures must be implemented since the risk of the hydrogen storage system is unacceptable in accordance with ISO 19880-1. The study highlights the significance of risk analysis conduction and the importance of considering costs associated with risk mitigation in the design of hydrogen storage system. 相似文献