首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum alloy bipolar plates have unique application potential in proton exchange membrane fuel cell (PEMFC) due to the characteristics of lightweight and low cost. However, extreme susceptibility to corrosion in PEMFC operation condition limits the application. To promote the corrosion resistance of aluminum alloy bipolar plates, a Ni–P/TiNO coating was prepared by electroless plating and closed field unbalanced magnetron sputter ion plating (CFUMSIP) technology on the 6061 Al substrate. The research results show that Ni–P interlayer improves the deposition effect of TiNO outer layer and increase the content of TiN and TiOxNy phases. Compared to Ni–P and TiNO single-layer coatings, the Ni–P/TiNO coating samples exhibited the lowest current density value of (1.10 ± 0.02) × 10?6 A·cm?2 in simulated PEMFC cathode environment. Additionally, potential cyclic polarization measurements were carried out aiming to evaluate the durability of the aluminum alloy bipolar plate during the PEMFC start-up/shut-up process. The results illustrate that the Ni–P/TiNO coating samples exhibit excellent stability and corrosion resistance.  相似文献   

2.
The present work was focused on the corrosion properties and contact resistance behavior of poly(orthophenlyenediamine) (PoPD) coating on 316L SS bipolar plates. To reduce the corrosion rate and increase the interfacial conductivity of 316L SS bipolar plates, PoPD coating was deposited using an electropolymerization technique by the various monomer concentration of orthophenlyenediamine (oPD) on its surface. The presence of 1, 2, 4, 5- tetra substituted benzene nuclei of phenazine units in the polymer coating was confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy analysis has confirmed the (%) of chemical composition in PoPD coating. The results of scanning electron microscopy analysis revealed that the uniform and compact coating with complete cover on 316L SS. The corrosion properties were investigated in 0.5 M H2SO4 and 2 ppm HF solution at 80 °C. The polarization test results showed that the PoPD coating reduced the corrosion current density both in the PEMFC anode and cathode environments. The charge transfer resistance values were in the order of 316L SS ? 0.02 M PoPD ? 0.06 M PoPD ? 0.04 M PoPD. A very low interfacial contact resistance and good adhesion strength was observed for 0.04 M PoPD coating. The higher contact angle of 0.04 M PoPD coating explained the hydrophobic property and more benefit of water management in the PEMFC environment. The results of the analysis of total metal ion releases clearly explained that the low level of metal ions released for 0.04 M PoPD coating. The overall studies revealed the PoPD coating with optimized 0.04 M oPD concentration showed best performance and provided more anodic protection to 316L SS bipolar plates.  相似文献   

3.
A conducting and anticorrosive coating is crucial for the application of metal bipolar plates (BP) in proton exchange membrane fuel cell (PEMFC). In this work, a Ti3C2Tx (T)-carbon black (C)-acrylic epoxy (AE) coating is prepared on 304 stainless steel (SS) with enhanced corrosion resistance and conductivity. The corrosion resistance of the T-C-AE coating is investigated in a 0.5 M H2SO4 solution as compared to the AE, T, and T-AE coatings. The T-C-AE coated 304SS exhibits the strongest corrosion resistance with the most positive corrosion potential and the lowest corrosion current density of 0.00673 μA cm?2 in all the samples, while retaining intact and compact surface morphology with the lowest metal ion dissolution even after immersed for 720 h. The addition of Ti3C2Tx and carbon black into the AE matrix greatly decreases interfacial contact resistance (ICR), and the T-C-AE coating achieves a low ICR of 15.5 mΩ cm?2 under 140 N cm?2 compaction force. The excellent anticorrosion performance is mainly attributed to the physical barrier and the cathodic protection provided by the stacked Ti3C2Tx (MXene) nanosheets in the T-C-AE coating. This eco-friendly, conducting, and anticorrosive T-C-AE coating has a good application prospect on SS BP of PEMFC.  相似文献   

4.
C doped CrTiN films were deposited on 316L stainless steel by magnetron sputtering technology to investigate corrosion resistance and electrical conductivity. The sputtering current of the C target alter to obtain various C contents. The carbon target currents are 0 A, 3 A and 6 A, respectively. The result of SEM confirms that deposited films have a dense and uniform microstructure. CrTiN coating consist of Cr, CrN and TiN phases. With the increase of C carbon target currents, Cr crystal structure vanishes, and the amorphous carbon and carbides appear. The result of the potentiodynamic polarization test in the simulate PEMFC environment reveals that C doped CrTiN coating can improve samples’ corrosion resistance. At 1.1 V (vs. SHE) potentiostatic tests, the C-6A has the lowest current density, 6.09 × 10−7 A/cm2. Interfacial contact resistance decreases with the addition of C atoms. The C-6A coated sample has the lowest interfacial contact resistance values, 5.5  mΩ cm2.  相似文献   

5.
In this work, two nitride coatings deposited on aluminum-based bipolar plates via cathodic arc evaporation physical vapor deposition (CAE-PVD) have been evaluated using two different techniques. The coating materials, a multi-layer chromium-zirconium nitride (ZrN–CrN) and a monolayer chromium nitride (CrN) have been exposed to electrochemical polarization tests for corrosion resistance simulating the typical environment in the anode and cathode sides in polymer electrolyte membrane fuel cells (PEMFC). Besides, two 3-cell PEMFC stacks, one per each coating material, have been formed. The migration of metal cations toward both the gas diffusion layers (GDL) and catalyst layers have been analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), after 100 h of continuous operation of the stacks. Results have shown that the two coatings applied over the Al-plates satisfy the corrosion resistance requirements in the short-term tests performed at the two stacks. Moreover, results obtained from electrochemical polarization tests have revealed that the CrN-coating confers a good corrosion resistance to the Al-based metal plate, achieving values of corrosion potential and corrosion current two orders of magnitude lower than the ones obtained for the Al alloy as-received.  相似文献   

6.
Aluminum bipolar plates offer good mechanical performance and availability for mass production while allow up to 65% lighter than stainless steel. To improve the corrosion resistance and surface electrical conductivity of aluminum bipolar plates, several coatings, including TiN, CrN, C, C/TiN and C/CrN, are deposited on aluminum alloy 5052 (AA-5052) by close field unbalanced magnetron sputter ion plating. Scanning electron microscope (SEM) results show that the coatings containing carbon layer are denser than TiN and CrN. Although the potentiodynamic test results show improved corrosion resistance by all the coatings, the potentiostatic test results reveal different stability of these coatings in PEMFC environments. Comparing the SEM images of these coatings after potentiostatic test, C/CrN multilayer coating exhibits the best stability. C/CrN multilayer coated AA-5052 has the lowest metal ion concentration after potentiostatic test, being 11.12 ppm and 1.29 ppm in PEMFC cathodic and anodic environments, respectively. Furthermore, the interfacial contact resistance (ICR) of the bare AA-5052 is decreased from 61.58 mΩ-cm2 to 4.08 mΩ-cm2 by C/CrN multilayer coating at the compaction force of 150 N-cm−2. Therefore, C/CrN multilayer coating is a good choice for surface modification of aluminum bipolar plate.  相似文献   

7.
In the present research, the corrosion resistance of Ni–P and Ni–P–Cr coatings on AA7075-T6 aluminum plates under simulated anodic and cathodic conditions of polymer electrolyte membrane fuel cells (PEMFC) has been studied by electrochemical impedance spectroscopy (EIS). Three Ni–P coatings 20 μm, 30 μm, and 40 μm thick applied by electroless deposition were tested. Besides, a two-layer Ni–P–Cr coating 30 μm thick was also analyzed. It was formed by an inner Ni–P layer, and an outer 10 μm thick chromium one added by electroplating. Corrosion tests were combined with interfacial contact resistance (ICR), roughness, contact angle, and SEM-EDX measurements. The best results were obtained for the 20 μm Ni–P and the two-layer Ni–P–Cr coatings, although the latter showed a high ICR value due to the high electrical resistivity of the chromium oxide surface formed. It was verified that coating degradation occurs when the electrolyte penetrates the micro-cracks and the nodular surface interfaces, reaching the base metal and causing the coating delamination. This behavior is associated with a sharp decrease in the polarization resistance (Rp) of the equivalent circuit model fitted to the EIS results.  相似文献   

8.
In order to improve the conductivity of titanium bipolar plate under the premise of ensuring its corrosion resistance for the proton exchange membrane fuel cell (PEMFC), the nitride coatings are deposited on the surface of titanium bipolar plate via a powder immersion reaction assisted coating (PIRAC) method. Both the scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) show that the dense titanium nitride coatings with the thickness around 1.5–2.5 μm are successfully prepared. Furthermore, the X-ray photoelectron spectroscopy (XPS) results confirm the presence of TiN, TiNxOy and TiO2 phases on the surface of nitride coatings, and the content of these phases is tunable by adjusting the prepared temperatures. Both the microstructure, the thickness and the composition of the nitride coatings could be associated with the corrosion resistance and the interfacial contact resistance of the nitrided samples. We find that the nitrided samples prepared at 1000 °C could be the ideal mixed coating materials with the proper combination of the corrosion resistance and the interfacial contact resistance, which also show the best long-term stability in simulated PEMFC cathode environment.  相似文献   

9.
We report in this paper a simple method of coating very thin graphene film on titanium substrate, affording it markedly enhanced resistance to corrosion and much decreased electrical contact resistance under the environment of proton exchange membrane fuel cells (PEMFC). The graphene film is formed by electrodepositing graphene oxide (GO) on Ti sheet via normal pulse voltammetry, followed by reducing the deposited GO at 500 °C in hydrogen atmosphere. The resultant graphene film, with a thickness of only around 50 nm, evenly covers and covalently bonds to the Ti sheet, as revealed by SEM, Raman and XPS. Both potentiodynamic and potentiostatic tests of the graphene coated Ti (G/Ti) sample are conducted under simulated chemical environment and electrode potentials of PEMFC. Under all the circumstances, the corrosion currents of G/Ti sheet are in the order of 10−7 A/cm2, significantly less than that of bare Ti sheet. Moreover, the coated graphene film on Ti sheet leads to a much lower and more stable interfacial contact resistance (ICR) of around 4 mΩ cm2. These results mean that the G/Ti sheet meets the U.S. DOE target of 2020 for PEMFC bipolar plates (BP) in terms of both the corrosion and electrical resistance. Therefore, the G/Ti sheet appears to be a very promising BP material in PEMFC.  相似文献   

10.
The effects of temperature on corrosion behavior, wettability, and surface conductivity of 304 stainless steel (SS304) in simulated cathode environment of proton exchange membrane fuel cells (PEMFC) are investigated systematically using electrochemical tests and surface analyses. The results indicate that although the corrosion resistance of SS304 is decreased with the rising of solution temperature, the current density of SS304 at the working potential in the simulated PEMFC cathode environment can still meet the 2025 U.S. Department of Energy (DOE) technical target (icorr < 1 μA cm?2). Meanwhile, the surface wettability and ICR of SS304 samples after potentiostatic polarization show a continuous increase with the rise of the simulated solution temperature. The surface conductivity of SS304 both before and after polarization cannot reach the 2025 DOE technical target (<0.01 Ω cm2) and needs to be improved by surface modification.  相似文献   

11.
Anticorrosion coating for stainless steel (SS) and titanium bipolar plates were evaluated to improve the corrosion resistance and electrical conductivity in PEMFC. The PEMFC offers clean and environmentally friendly usage in electrical power systems. The bipolar plates contribute 60%–80% of the total components of PEMFC stack with electrical conductivity >100 S cm?1. Therefore, high conductivity and corrosion resistance are observed for long-term operations in PEMFC. Recent works has developed the cost-effective and feasible alternative materials to replace graphite bipolar plates. Metallic materials, such as SS and titanium, possess good electrical conductivity but poor corrosion resistance. Coating of SS and titanium bipolar plates can improve the corrosion resistance of metallic bipolar plates. Excellent performance of bipolar plates was recorded by using NbC coating for stainless steel materials. The ICR value using plasma surface alloying method was 8.47 mΩ cm2 with a low current density (Icorr) between 0.051 and 0.058 μA cm?2. The criteria for both current densities (<1 μA cm?2) and electrical conductivity (<10 mΩ cm2) met the DOE's 2020 technical targets. In addition, conventional air brush method can be used for fabricating multilayer coatings onto substrates because it is self-cleaning, low cost and offers high volume and large area production. Vapor deposition method, a highly advanced coating technology using PVD, suitable for coating bipolar plates because it is environmentally friendly and can be used in high temperatures, producing materials with good impact strength and excellent abrasion resistance. PEMFC cost is still too high for large scale commercialization, which is the cost of raw material and processing to allow fabrication of thinner plates contributes substantially to the total PEMFC cost. Some future works on fuel cell anticorrosion research with reasonable coating method is suggested to reduce the cost in order to facilitate the move toward commercialization especially for SS and titanium bipolar plates.  相似文献   

12.
The influence of bias voltage on surface microstructure of TiN films deposited on Ti substrate by multi-arc ion plating was systematically investigated. The TiN films were characterized using X-ray diffraction, scanning electron microscopy and atomic force microscopy. The corrosion resistance was tested by potentiodynamic polarization and electrochemical impedance spectroscopy at 70–80 °C in the simulated PEMFC cathode environment. The results show that the surface microstructure of TiN film depends strongly on the bias voltages. At the bias voltage of −100 V, TiN film shows the optimum surface microstructure with the lowest surface roughness Rz of 0.039 μm tested by AFM and relatively high compactness. The optimized TiN film exhibits excellent corrosion resistance with corrosion current density of 0.87 μA/cm2 in a 0.5 M H2SO4 + 2 ppm HF solution at 80 °C with air and a low interfacial contact resistance (ICR) value of 3.0 mΩ cm2 at a compaction force of 140 N/cm2. These results support TiN as a promising coating material for Ti bipolar plates.  相似文献   

13.
Carbon film has been deposited on 304 stainless steel (SS304) using close field unbalanced magnetron sputter ion plating (CFUBMSIP) to improve the corrosion resistance and electrical conductivity of SS304 acting as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The corrosion resistance, interfacial contact resistance (ICR), surface morphology and contact angle with water of the bare and carbon-coated SS304 are investigated. The carbon-coated SS304 shows good corrosion resistance in the simulated cathode and anode PEMFC environment. The ICR between the carbon-coated SS304 and the carbon paper is 8.28-2.59 mΩ cm2 under compaction forces between 75 and 360 N cm−2. The contact angle of the carbon-coated SS304 with water is 88.6°, which is beneficial to water management in the fuel cell stack. These results indicate that the carbon-coated SS304 exhibits high corrosion resistance, low ICR and hydrophobicity and is a promising candidate for bipolar plates.  相似文献   

14.
Insufficient corrosion resistance, electrical conductivity and wettability of bipolar plates are some of the important issues affecting the performance of hydrogen fuel cells. To address these issues, an amorphous Al–Cr–Mo–N coating is deposited on type 316L stainless steel using direct current (DC) magnetron sputtering. The electrochemical corrosion behaviour is investigated under simulated fuel cell anode (H2-purging) and cathode (air-purging) environment consisting of 0.5 M H2SO4 + 2 ppm NaF at 70 ± 2 °C. The corrosion current density is reduced to 0.02 μA cm−2 comparable to the commercially used Ta/TaN coatings. The polarization resistance increases by two orders of magnitude and the interfacial contact resistance (ICR) reduces significantly due to the application of the coating. Further, the coating shows better water management due to high hydrophobicity than the bare stainless steel.  相似文献   

15.
TiN coatings were deposited by HiPIMS at different N2 flow rate to improve the corrosion resistance and conductivity of metallic bipolar plates. The results show that the surface microstructure of TiN coating depends strongly on the N2 flow rate, all the samples (N2 flow rate: 4 to10 sccm) meet the DOE 2025 standard and exhibit good hydrophobicity, which has great potential for industrial application. Among them, at the N2 flow rate of 8 sccm, the TiN coating shows high compactness and the optimum surface microstructure with the lowest surface roughness of 1.083 nm and the highest hardness of 31.172 GPa. The optimized TiN coating exhibits excellent corrosion resistance with corrosion current density of 0.278 μA cm?2 and a low interfacial contact resistance value of 3.51 mΩ cm2. This work has opened a new way for the large-scale preparation of high-performance metal bipolar plate coatings.  相似文献   

16.
The strength and bulk electrical conductivity of Fe-Ni-Cr alloy are high; it is a potential material as the bipolar plate for proton exchange membrane fuel cell (PEMFC). However, its interfacial contact resistance is too high and the corrosion resistance is too low to survive in the hostile environment. A novel method by altering the surface morphology to improve directional conductivity is developed in the present study. Instead of preparing conductive coating on metal surface, a nano-oxidation layer with many nano-scaled pyramids is formed by solution treatment for Fe-Ni-Cr alloy. The formation of the dense oxide layer improves the corrosion resistance of the alloy. Furthermore, many nano-scale contacts on the surface of the treated specimen offer channels for directional electron conduction and decrease the interfacial contact resistance.  相似文献   

17.
Corrosion resistance of tantalum coatings 30 μm thick deposited by chemical vapor deposition on SS316L coupons has been evaluated by electrochemical impedance spectroscopy (EIS). To this end, anodic and cathodic operating conditions of proton exchange membrane fuel cells (PEMFC) have been simulated in a three-electrode heated corrosion cell. Interfacial contact resistance (ICR), contact angle and durability tests have been performed in long-term tests (>100 h) polarizing the electrode to 1.193 V vs. Ag/AgCl. Results obtained by different experimental techniques show a dense coating structure with a high polarization resistance, mainly formed by surface crystals of α-Ta (bcc), Ta2O5 and carbon. An atomic ratio (in %) of oxide to metallic species (Taox/Tamet) of 4.8 was verified from XPS spectra, which is slightly increased to 6.23 after the anodizing treatment. The modified surface composition yielded a coating capacity higher than the amorphous oxide, favoring the in-plane electrical conduction. After the treatment, no noticeable changes were observed neither in surface morphology nor in contact angle (>90°). ICR values in the range of 22.3–32.6 mΩ cm2 were obtained for a clamping pressure of 140 N cm−2. No morphological changes or loss of coating adherence were observed during the long-term tests.  相似文献   

18.
Polymer electrolyte membrane fuel cell (PEMFC) stacks suffer from the high cost and low volumetric energy of non-porous graphite bipolar plates. To resolve this problem, a bilayer coating consisting of Ni and Ni–Cr–P is deposited on AISI 1020 low-carbon steel using pulse electrodeposition. Ni/Ni–Cr–P-coated AISI 1020 is evaluated as a bipolar plate material for PEMFCs. Ni/Ni–Cr–P-coated substrates exhibit better corrosion resistance in both cathodic (air-purging) and anodic (H2-purging) environment than the bare AISI 1020 substrate and lower interfacial contact resistance (ICR) than bare AISI 1020 and stainless steel. Further, it is expected to show better water management as the Ni/Ni–Cr–P coating is more hydrophobic than the bare substrate. Preliminary studies show that Ni/Ni–Cr–P-coated AISI 1020 plate can be a suitable candidate for replacing graphite as the bipolar plate of PEMFCs.  相似文献   

19.
The feasibility of using sintered stainless steel fiber felt (SSSFF) as gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) is evaluated in this study. The SSSFF is coated with an amorphous carbon (a-C) film by closed field unbalanced magnetron sputter ion plating (CFUBMSIP) to enhance the corrosion resistance and reduce the contact resistance. The characteristics of treated SSSFF, including microscopic morphology, mechanical properties, electrical conductivity, electrochemical behavior and wettablity characterization, are systematically investigated and summarized according to the requirements of GDL in PEMFC. A membrane electrode assembly (MEA) with a-C coated SSSFF-15 GDL is fabricated and assembled with a-C coated stainless steel bipolar plates in a single cell. The initial peak power density of the single cell is 877.8 mW cm−2 at a current density of 2324.9 mA cm−2. Lifetime test of the single cell over 200 h indicates that the a-C coating protects the SSSFF-15 GDL from corrosion and decreases the performance degradation from 30.6% to 6.3%. The results show that the SSSFF GDL, enjoying higher compressive modulus and ductility, is a promising solution to improve fluid permeability of GDL under compression and PEMFC durability.  相似文献   

20.
Herein, a Ni–Fe–Sn coating was synthesized in-situ on Ni mesh by one-step electrodeposition at different durations. The Ni–Fe–Sn60 electrode obtained after 1 h deposition exhibits cauliflower-like morphology and the best electrocatalytic properties for the hydrogen evolution reaction (HER) compared to other electrodes. The electrode requires an overpotential of 43 mV at a current density of 10 mA cm−2 and a small Tafel slope of 70 mV dec−1 in a 1 M KOH solution. Moreover, the electrode shows outstanding stability in prolonged electrolysis and overall water splitting performance, generating a current density of 93 mA cm−2 at 1.8 V, which is thrice that of an industry electrode. This electrocatalytic activity is ascribed to the high active surface area produced by the cauliflower-like Ni–Fe–Sn particles and the synergistic interaction of Ni, Fe and Sn. The simple synthesis method and excellent performance endow this electrode with great potential for large-scale applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号