首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron beam plasma methane pyrolysis is a hydrogen production pathway from natural gas without direct CO2 emissions. In this work, two concepts for a technical implementation of the electron beam plasma pyrolysis in a large-scale hydrogen production plant are presented and evaluated in regards of efficiency, economics and carbon footprint. The potential of this technology is identified by an assessment of the results with the benchmark technologies steam methane reforming, steam methane reforming with carbon capture and storage as well as water electrolysis. The techno-economic analysis shows levelized costs of hydrogen for the plasma pyrolysis between 2.55 €/kg H2 and 5.00 €/kg H2 under the current economic framework. Projections for future price developments reveal a significant reduction potential for the hydrogen production costs, which support the profitability of plasma pyrolysis under certain scenarios. In particular, water electrolysis as direct competitor with renewable electricity as energy supply shows a considerably higher specific energy consumption leading to economic advantages of plasma pyrolysis for cost-intensive energy sources and a high degree of utilization. Finally, the carbon footprint assessment indicates the high potential for a reduction of life cycle emissions by electron beam plasma methane pyrolysis (1.9 kg CO2 eq./kg H2 – 6.4 kg CO2 eq./kg H2, depending on the electricity source) compared to state-of-the-art hydrogen production technology (10.8 kg CO2 eq./kg H2).  相似文献   

2.
The UK electricity mix will change significantly in the future. This provides an opportunity to consider the full life cycle sustainability of the options currently considered as most suitable for the UK: gas, nuclear, offshore wind and photovoltaics (PV). In an attempt to identify the most sustainable options and inform policy, this paper applies a sustainability assessment framework developed previously by the authors to compare these electricity options. To put discussion in context, coal is also considered as a significant contributor to the current electricity supply. Each option is assessed and compared in terms of its economic, environmental and social implications, using a range of sustainability indicators. The results show that no one technology is superior and that certain trade‐offs must be made. For example, nuclear and offshore wind power have the lowest life cycle environmental impacts, except for freshwater ecotoxicity for which gas is the best option; coal and gas are the cheapest options (£74 and 66/MWh, respectively, at 10% discount), but both have high global warming potential (1072 and 379 g CO2 eq./kWh); PV has relatively low global warming potential (88 g CO2 eq./kWh) but high cost (£302/MWh), as well as high ozone layer and resource depletion. Nuclear, wind and PV increase some aspects of energy security: in the case of nuclear, this is due to inherent fuel storage capabilities (energy density 290 million times that of natural gas), whereas wind and PV decrease fossil fuel import requirements by up to 0.2 toe/MWh. However, all three options require additional installed capacity for grid management. Nuclear also poses complex risk and intergenerational questions such as the creation of 10.16 m3/TWh of nuclear waste for long‐term geological storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Urban governments are continually striving to improve air quality by making public transportation more environmentally friendly. H2 fuel cell buses (FCBs) offer one of the best ways to reduce air pollution. FCB has high energy efficiency and lower air pollutant emissions than conventional buses (e.g. diesel bus/Compressed natural gas bus, CNGB), and H2 is an attractive alternative energy source in the face of depleting fossil fuels and global warming. H2 can be produced via fossil fuels and renewable sources and then stored and distributed in a variety of different ways. While many contend that H2 and FCB are not yet commercially viable, H2 technology has developed a great deal over recent years. This fact alone demands that governments as well as for-profit businesses take a discerning look at what H2 and FCB have to offer in terms of both environmental and economic opportunities.In this study, environmental and economic aspects of hydrogen pathways are analyzed according to plausible production methods and capacity, and distribution options in Korea using life cycle assessment (LCA) and life cycle costing (LCC) methods. This study considers the following means of hydrogen production: naphtha steam reforming (Naphtha SR), natural gas steam reforming (NG SR), and water electrolysis (WE). Additionally, conventional fuels (Diesel and CNG) are also included as target fuel pathways in order to identify which hydrogen pathway in particular has the greatest environmental advantage over conventional fuels. This study aimed to identify whether H2 and FCB can compete with conventional fuels used in buses in terms of the eco-efficiency method, which focuses on economic feasibility and environmental improvement.The conclusion of this study is that H2 pathways, especially, Naphtha SR [C] and NG SR [S], are more competitive than conventional fuels from an eco-efficiency perspective. As a result, switching from conventional transportation fuel to these suggested H2 pathways is expected to offer an economically and environmentally more eco-efficient means of transportation. Henceforth, drawing upon evidence within this report, decision-makers would be wise to invest in more cost-effective and environment-friendly fuels by constructing an optimal H2 infrastructure.  相似文献   

4.
Hydrogen is broadly utilized in various industries. It can also be considered as a future clean energy carrier. Currently, hydrogen is mainly produced from typical fuels such as coal; however, there exist some other clean alternatives which use water decomposition techniques. Water splitting via the copper-chlorine (Cu–Cl) thermochemical cycle is a superb option for producing clean carbon-free fuel. Here, the life cycle assessment (LCA) technique is used to investigate the environmental consequences of an integrated solar Cu–Cl fuel production facility for large-scale hydrogen production. The impact of varying important input parameters including irradiation level, plant lifetime, and solar-to-hydrogen efficiency on various environmental impacts are investigated next. For instance, an improve in the solar-to-hydrogen efficiency from 15% to 30%, results in a reduction in the GWP from 1.25 to 6.27E-01 kg CO2 eq. An uncertainty analysis using Monte Carlo simulation is conducted to deal with the study uncertainties. The results of the LCA show that the potential of acidification and global warming potential (GWP) of the current system are 8.27E-03 kg SO2 eq. and 0.91 kg CO2 eq./kg H2, respectively. According to the sensitivity analysis, the plant lifetime has the highest effect on the total GWP of the plant with a range of 0.63–1.88 kg of CO2 eq./kg H2. Results comparison with past thermochemical-based studies shows that the GWP of the current integrated system is 7% smaller than that of a solar sulfur-iodine thermochemical cycle.  相似文献   

5.
In this study, carbon-free fuels -ammonia and hydrogen-are proposed to replace heavy fuel oils in the engines of maritime transportation vehicles. Also, it is proposed to use hydrogen and ammonia as dual fuels to quantify the reduction potential of greenhouse gas emissions. An environmental impact assessment of transoceanic tanker and transoceanic freight ship is implemented to explore the impacts of fuel substituting on the environment. In the life cycle analyses, the complete transport life cycle is taken into account from manufacture of transoceanic freight ship and tanker to production, transportation and utilization of hydrogen and ammonia in the maritime vehicles. Several hydrogen and ammonia production routes ranging from municipal waste to geothermal options are considered to comparatively evaluate environmentally benign methods. Besides global warming potential, environmental impact categories of marine sediment ecotoxicity and marine aquatic ecotoxicity are also selected in order to examine the diverse effects on marine environment. Being carbon-neutral fuels, ammonia and hydrogen, yield significantly minor global warming impacts during operation. The ecotoxicity impacts on maritime environment vary based on the production route of hydrogen and ammonia. The results imply that even hydrogen and ammonia are utilized as dual fuels in the engines, the global warming potential is quite lower in comparison with heavy fuel oil driven transoceanic tankers. Geothermal energy sourced hydrogen and ammonia fuelled transoceanic tankers release about 0.98 g and 1.65 g CO2 eq. per tonne-kilometer, respectively whereas current conventional heavy fuel oil tanker releases about 5.33 g/tonne-kilometer CO2 eq. greenhouse gas emissions.  相似文献   

6.
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production, transportation, and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm, sizing of the electrolyser, PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced, transported, and dispensed using this system can meet the entire current bus fuel demand for all the studied cities, at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH, the future operational cost of FCEBs in Belfast, Cork and Dublin can be competitive with public buses fuelled by diesel, especially under carbon taxes more reflective of the environmental impact of fossil fuels.  相似文献   

7.
This study aims to provide a comprehensive environmental life cycle assessment of heat and power production through solid oxide fuel cells (SOFCs) fueled by various chemical feeds namely; natural gas, hydrogen, ammonia and methanol. The life cycle assessment (LCA) includes the complete phases from raw material extraction or chemical fuel synthesis to consumption in the electrochemical reaction as a cradle-to-grave approach. The LCA study is performed using GaBi software, where the selected impact assessment methodology is ReCiPe 1.08. The selected environmental impact categories are climate change, fossil depletion, human toxicity, water depletion, particulate matter formation, and photochemical oxidant formation. The production pathways of the feed gases are selected based on the mature technologies as well as emerging water electrolysis via wind electricity. Natural gas is extracted from the wells and processed in the processing plant to be fed to SOFC. Hydrogen is generated by steam methane reforming method using the natural gas in the plant. Methanol is also produced by steam methane reforming and methanol synthesis reaction. Ammonia is synthesized using the hydrogen obtained from steam methane reforming and combined with nitrogen from air in a Haber-Bosch plant. Both hydrogen and ammonia are also produced via wind energy-driven decentralized electrolysis in order to emphasize the cleaner fuel production. The results of this study show that feeding SOFC systems with carbon-free fuels eliminates the greenhouse gas emissions during operation, however additional steps required for natural gas to hydrogen, ammonia and methanol conversion, make the complete process more environmentally problematic. However, if hydrogen and ammonia are produced from renewable sources such as wind-based electricity, the environmental impacts reduce significantly, yielding about 0.05 and 0.16 kg CO2 eq., respectively, per kWh electricity generation from SOFC.  相似文献   

8.
Hybrid microgrid systems are an emerging tool for rural electrification due in part to their purported environmental benefits. This study uses Life Cycle Assessment (LCA) to compare the environmental impacts of a diesel/PV/wind hybrid microgrid on the island of Koh Jig, Thailand with the electrification alternatives of grid extension and home diesel generators. The impact categories evaluated are: acidification potential (kg SO2 eq), global warming potential (kg CO2 eq), human toxicity potential (kg 1.4 DCB eq), and abiotic resource depletion potential (kg Sb eq). The results show that the microgrid system has the lowest global warming and abiotic resource depletion potentials of all three electrification scenarios. The use phase of the diesel generator and the extraction of copper are shown to significantly contribute to the microgrid's environmental impacts. The relative environmental impacts of the grid extension scenario are found to be proportional to the distance required for grid extension. Across all categories except acidification potential, the impacts from the home diesel generators are the largest. Sensitivity analyses show that maximizing the renewable energy fraction does not necessarily produce a more environmentally sustainable electrification scenario and that the diesel generator provides versatility to the system by allowing power production to be scaled significantly before more technology is needed to meet demand. While the environmental benefits of the microgrid increase as the installation community becomes more isolated, the choice of electrification scenario requires assigning relative importance to each impact category and considering social and economic factors.  相似文献   

9.
This paper investigates the economics of a fuel cell bus fleet powered by hydrogen produced from electricity generated by a wind park in Austria. The main research question is to simultaneously identify the most economical hydrogen generation business model for the electric utility owning wind power plants and to evaluate the economics of operating a fuel cell bus fleet, with the core objective to minimize the total costs of the overall fuel supply (hydrogen production) and use (bus and operation) system. For that, three possible operation modes of the electrolyzer have been identified and the resulting hydrogen production costs calculated. Furthermore, an in-depth economic analysis of the fuel cell buses as well as the electrolyzer technology has been conducted. Results show that investment costs are the largest cost factor for both technologies. Thus, continuous hydrogen production with the smallest possible electrolyzer is the economically most favorable option. In such an operation mode (power grid), the costs of production per kg/H2 were the lowest. However, this means that the electrolyzer cannot be solely operated with electricity from the wind park, but is also dependent on the electricity mix from the grid. For fuel cell buses, the future cost development will depend very much on the respective policies and funding programs for the market uptake, as to date, the total cost of use for the fuel cell bus is more than two times higher than the diesel bus. The major final conclusion of this paper is that to make fuel cell electric busses competitive in the next years today severe policy interferences, such as subsidies for these busses as well as electrolyzers and bans for fossil energy, along with investments in the setup of a hydrogen infrastructure, are necessary.  相似文献   

10.
The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.  相似文献   

11.
This article gives an overview of the state‐of‐the‐art biomass‐based hydrogen production technologies. Various biological and thermochemical processes of biomass are taken into consideration to find the most economical method of hydrogen production. Biohydrogen generated by biophotolysis method, photo‐fermentation and dark fermentation is studied with respect to various feedstocks in Malaysia. The fermentation approaches of biohydrogen production have shown great potential to be a future substitute of fossil fuels. Dark fermentation method is a simple biological hydrogen production method that uses a variety of substrate and does not require any light as a source of energy. A promising future for biohydrogen production is anticipated by this process both industrially and commercially. Feasibility of hydrogen production from pyrolysis and water gasification of various biomass feedstock confirm that supercritical water gasification (SCWG) of biomass is the most cost‐effective thermochemical process. Highly moisturized biomass could be employed directly in SCWG without any high‐cost drying process. Indeed, a small amount of energy is required to pressurize hydrogen in the storage tank because of highly pressurized SCWG process. The cost of hydrogen produced by SCWG of biomass is about US$3/GJ (US$0.35/kg), which is extremely lower than biomass pyrolysis method (in the range of US$8.86/GJ to US$15.52/GJ) and wind‐electrolysis systems and PV‐electrolysis systems (US$20.2/GJ and US$41.8/GJ, respectively). The best feedstock for biomass‐based hydrogen production is identified based on the availability, location of the sources, processes required for the preparation of the feedstock and the total cost of acquiring the feedstock. The cheapest and most abundantly available biomass source in Malaysia is the waste of palm industry. Hydrogen production from palm oil mill effluent and palm solid residue could play a crucial role in the energy mix of Malaysia. Malaysia has this great capability to supply about 40% of its annual energy demand by hydrogen production from SCWG of palm solid waste. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Ammonia is considered a sustainable energy storage medium with zero carbon content. In this work, thermal catalytic cracking of liquefied natural gas (LNG) at elevated temperatures employing concentrated solar tower is considered to produce clean hydrogen (CO2-free) and studied in terms of life cycle emissions. The generated hydrogen is utilized for clean ammonia synthesis in a Haber-Bosch reactor. The proposed system is initially assessed from a thermodynamic perspective, considering energy and exergy analyses emphasizing optimization of operating conditions. Then, the proposed system's life cycle assessment (LCA) is performed to analyze ammonia synthesis's environmental impacts. The aggregate environmental impact of the proposed system is quantified and compared with conventional production processes. Through the utilization of solar energy resources, ammonia production can be attained, avoiding high harmful emissions. The LCA study is carried out in GaBi software, and the selected impact assessment methodology is ReCiPe. The impact categories studied in this work are global warming potential (GWP), terrestrial acidification, human toxicity, and particulate matter formation potential. Considering 30 years of use phase and allocation, the predicted GWP is approximately 0.616 kg CO2 (eq.)/kg NH3, showing the potential to reduce up to 69.2% of the GWP compared to the global average value. Concerning human toxicity and fine particulate matter formation impact categories, the system produces about 3.32E-2 kg 1,4-DB (eq.) and 5.96E-4 kg PM2.5 (eq.), respectively, per kg NH3. The results are further analyzed by dominance, break-even, and variation analyses in detail.  相似文献   

13.
This study provides methodologies, data collection and results of well-to-wheel greenhouse gas analysis of various H2 production pathways for fuel-cell electric vehicle (FCEV) in Korea; naphtha cracking, steam methane reforming, electrolysis and coke oven gas purification. The well-to-wheel (WTW) greenhouse gas emissions of FCEV are calculated as 32,571 to 249,332 g-CO2 eq./GJ or 50.7 to 388.0 g-CO2 eq./km depending on the H2 production pathway. The landfill gas (on-site) pathway has the lowest GHG emissions because the carbon credit owing to use landfill gas. The electrolysis with Korean grid mix (on-site) pathway has the highest GHG emissions due to its high emission factor of the power generation process. Furthermore, the results are compared with other powertrain vehicles in Korea such as internal combustion engine vehicle (ICEV), hybrid electric vehicle (HEV) and electric vehicle (EV). The averaged WTW result of FCEV is 35% of ICEV, is 47% of HEV, and is 63% of EV.  相似文献   

14.
In the present study, a comparative life cycle assessment (LCA) for evaluation of the environmental impacts of different fuels to generate electricity through a combined cycle is carried out. For this purpose, various heat sources including solar thermal, lignite, natural gas, oil, and hydrogen are investigated with LCA methods. The methods considered for the study include CML 2001 and ReCiPe Endpoint. The results of the present LCA study for both methods show that the hydrogen is the best fuel option according to the environmental impacts. The impact categories obtained from CML 2001 are the depletion of abiotic resources, eutrophication, global warming, marine sediment, and aquatic ecotoxicity, freshwater aquatic ecotoxicity and the competition of land. Furthermore, the human health, ecosystems and resource availability are investigated with the ReCiPe Endpoint method. The greenhouse gas emissions per kWh electricity generation are 0.19 kg CO2 eq for solar, 1.21 kg CO2 eq for lignite, 0.53 kg CO2 eq for natural gas, 1.11 kg CO2 eq for oil and 0.04 kg CO2 eq for hydrogen according to the CML 2001 method.  相似文献   

15.
Given the current issues with global warming and rising greenhouse gas emissions, biohydrogen is a viable alternative fuel option. Technologies to produce biohydrogen include photo fermentation, dark fermentation, direct and indirect bio-photolysis, and two-stage fermentation. Biological hydrogen generation is a green and promising technique with mild reaction conditions and low energy consumption compared to thermochemical and electrochemical hydrogen generation. To optimize hydrogen gas output using this method, the activity of hydrogen-consuming bacteria should be restricted during the production stages of hydrogen and acetate to prevent or limit hydrogen consumption. Raw material costs, poor hydrogen evolution rates, and large-scale output are the main limitations in biological hydrogen generation systems. Organic wastes would be the most preferred target feedstock for hydrogen fermentation, aside from biodegradable wastes, due to their high amount and simultaneous waste treatment advantage. This study examined the three primary methods for converting waste into bio-hydrogen: microbial electrolysis cell, thermochemical gasification, and biological fermentation, from both a technological and environmental standpoint. The effectiveness and applicability of these bioprocesses in terms of aspects influencing processes and their constraints are discussed. Alternative options for improving process efficiency, like microbial electrolysis, bio-augmentation, and multiple process integration, are also considered for industrial-level applications. Biohydrogen generation might be further enhanced by optimization of operating conditions and adding vital nutrients and nanoparticles. Cost reduction and durability enhancement are the most significant hindrances to fuel-cell commercialization. This review summarizes the biohydrogen production pathways, the impact of used organic waste sources, and bacteria. The work also addresses the essential factors, benefits, and challenges.  相似文献   

16.
A consideration of the economic viability of hydrogen fuel production is important in the STEP (Solar Thermal Electrochemical Photo) production of hydrogen fuel. STEP is an innovative way to decrease costs and increase the efficiency of hydrogen fuel production, which is a synergistic process that can use concentrating photovoltaics (CPV) and solar thermal energy to drive a high temperature, low voltage, electrolysis (water-splitting), resulting in H2 at decreased energy and higher solar efficiency. This study provides evidence that the STEP system is an economically viable solution for the production of hydrogen. STEP occurs at both higher electrolysis and solar conversion efficiencies than conventional room temperature photovoltaic (PV) generation of hydrogen. This paper probes the economic viability of this process, by comparing four different systems: (1) 10% or (2) 14% flat plate PV driven aqueous alkaline electrolysis H2 production, (3) 25% CPV driven molten electrolysis H2 production, and (4) 35% CPV driven solid oxide electrolysis H2 production. The molten and solid oxide electrolysers are high temperature systems that can make use of light, normally discarded, for heating. This significantly increases system efficiency. Using levelized cost analysis, this study shows significant cost reduction using the STEP system. The total price per kg of hydrogen is shown to decrease from $5.74 to $4.96 to $3.01 to $2.61 with the four alternative systems. The advanced STEP plant requires less than one seventh of the land area of the 10% flat cell plant. To generate the 216 million kg H2/year required by 1 million fuel cell vehicles, the 35% CPV driven solid oxide electrolysis requires a plant only 9.6 mi2 in area. While PV and electrolysis components dominate the cost of conventional PV generated hydrogen, they do not dominate the cost of the STEP-generated hydrogen. The lower cost of STEP hydrogen is driven by residual distribution and gate costs.  相似文献   

17.
Distributed waste-to-hydrogen (WtH) systems are a potential solution to tackle the dual challenges of sustainable waste management and zero emission transport. Here we propose a concept of distributed WtH systems based on gasification and fermentation to support hydrogen fuel cell buses in Glasgow. A variety of WtH scenarios were configured based on biomass waste feedstock, hydrogen production reactors, and upstream and downstream system components. A cost-benefit analysis (CBA) was conducted to compare the economic feasibility of the different WtH systems with that of the conventional steam methane reforming-based method. This required the curation of a database that included, inter alia, direct cost data on construction, maintenance, operations, infrastructure, and storage, along with indirect cost data comprising environmental impacts and externalities, cost of pollution, carbon taxes and subsidies. The levelized cost of hydrogen (LCoH) was calculated to be 2.22 GB P/kg for municipal solid waste gasification and 2.02 GB P/kg for waste wood gasification. The LCoHs for dark fermentation and combined dark and photo fermentation systems were calculated to be 2.15 GB P/kg and 2.29 GB P/kg. Sensitivity analysis was conducted to identify the most significant influential factors of distributed WtH systems. It was indicated that hydrogen production rates and CAPEX had the largest impact for the biochemical and thermochemical technologies, respectively. Limitations including high capital expenditure will require cost reduction through technical advancements and carbon tax on conventional hydrogen production methods to improve the outlook for WtH development.  相似文献   

18.
A comprehensive life cycle assessment (LCA) is carried out for three methods of hydrogen production by solar energy: hydrogen production by PEM water electrolysis coupling photothermal power generation, hydrogen production by PEM water electrolysis coupling photovoltaic power generation, and hydrogen production by thermochemical water splitting method using S–I cycle coupling solar photothermal technology. The assessment also contains an evaluation of four environmental factors which are global warming potential, acidification potential, ozone depletion potential, and nutrient enrichment potential. After conducting a quantitative analysis of all three methods with environmental factors being considered, a conclusion has been drawn: The global warming potential and the acidification potential of the thermochemical water splitting by S–I cycle coupling solar photothermal technology are 1.02 kg CO2-eq and 6.56E-3 kg SO2-eq. And this method has significant advantages in the environmental impact of the whole ecosystem.  相似文献   

19.
Renewable hydrogen from water electrolysis could contribute to the defossilization of various energy intensive sectors but continues to suffer from unfavorable economics. Attention is being paid to the direct supply of renewable electricity to electrolyzers; in particular from photovoltaic (PV) and wind units, whose fixed remuneration period has expired. However, detailed analysis of such operating strategies via modeling and simulation of the dynamic behavior of alkaline electrolysis (AEL) and polymer electrolyte membrane electrolysis (PEMEL) is lacking. In this work, an electrolyzer model is developed for both AEL and PEMEL and analyzed for PV and wind power input data sets from the region of northwest Germany. It is shown that key performance indicators (KPI) such as hydrogen production efficiency, electricity utilization rate, product output and net production costs are highly reliant on the shape of transient power input signals as well as the electrolyzers ability to cope with them. PEMEL technology generally has higher electricity utilization rates than AEL, while AEL still achieves relatively large hydrogen production quantities due to its higher efficiency. Thus, the better operational flexibility of PEMEL cannot generally be considered advantageous in terms of hydrogen production quantities – the same applies for economics. The most competitive hydrogen production costs were 4.33 € per kg for the AEL technology with direct electricity supply from old wind farms, which no longer receive fixed remuneration.  相似文献   

20.
The hybrid sulphur process is one of the most promising thermochemical water splitting cycles for large scale hydrogen production. While the process includes an electrolysis step, the use of sulphur dioxide in the electrolyser significantly reduces the electrical demand compared to conventional alkaline electrolysis. Solar operation of the cycle with zero emissions is possible if the electricity for the electrolyser and the high temperature thermal energy to complete the cycle are provided by solar technologies.This paper explores the possible use of photovoltaics (PV) to supply the electrical demand and examines a number of configurations. Production costs are determined for several scenarios and compared with base cases using conventional technologies. The hybrid sulphur cycle has promise in the medium term as a viable zero carbon production process if PV power is used to supply the electrolyser. However, the viability of this process is dependent on a market for hydrogen and a significant reduction in PV costs to around $1/Wp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号