首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photocatalytic hydrogen production and thermal storage are effective ways to convert solar energy into storable chemical energy and thermal energy, but they only respond to specific spectrum. In order to improve the energy conversion and storage efficiency of solar energy in the solar spectrum, hydrothermal and photo-deposition method were employed to synthesized photothermal catalyst while and Au/TiO2@PCM composite microcapsules were fabricated by electrostatic adsorption self-assembly methods. Micro-morphologies and structures were detailed characterized by SEM, XRD, UV-Vis, etc. As calculated from the DSC results for effective, enthalpy value, the loading rates of Au/TiO2 shell for the microcapsule were 12.6% and 15.4% corresponding to rod-shaped and sheet-shaped samples. To test their catalytic performance, the samples were dispersed in the same concentration of glycerol solution, and showed that the light to hydrogen efficiencies were 11.4‰ and 5.0‰ for ATR@PCM and ATF@PCM, respectively with the increasement of 53.8% and 56.1% comparing to their corresponding catalyst nanoparticle suspensions. Photo-thermal conversion efficiencies of ATR@PCM and ATF@PCM were 62.74% and 53.32% after 60 min-irradiations, and they were 48.22% and 25.96% higher than that of Me-PCM. Therefore, it was confirmed that the composite phase change microcapsules prepared in this study have the dual functions of energy storage and photothermal catalysis. Higher solar light to hydrogen energy conversion efficiency may be attained in future study if the stored thermal energy can be successfully employed to activate organic components for helping catalytic hydrogen generation.  相似文献   

2.
Probing the effect of spatial morphology of catalyst on its photothermal catalytic performance is crucial for solar-driven renewable catalytic reforming of hydrogen production. In this study, Au nanoparticles loaded on various morphologies of TiO2 nanoparticles were synthesized and characterized. The experimental results indicated that decorating TiO2 with Au nanoparticles could dramatically increase its photocatalytic activities by 20–40 times. The photothermal conversion efficiency of Au/TiO2 (12.74%–25.54%) was higher than those of TiO2 due to the introduction of LSPR of Au nanoparticles could effectively improve the utilization of solar spectrum. Titania nanoflower (TNF) nanoparticles with high light absorption capacity, better colloidal dispersion stability, porous properties and narrow band gap represented the highest H2 productivity (144.13 μmol·g−1·h−1). The coarse surface structure was also conducive to the dispersion of gold particles on the surface of the carrier and the growth rate of Au/TNF hydrogen production (40 times) which was higher than that of other morphology within 2 h. The results of glycerol photothermal hydrogen generation highlighted the effect of temperature on colloidal dispersion stability and hydrogen production capability of nanoparticle suspension. It demonstrated that the photothermal effect aroused a temperature rise that would deteriorate the dispersion stability of the suspension although a local entropy increase in the catalyst nanoparticles might occur. At the same time, the temperature rise caused by the photothermal effect efficiently produces hydrogen in the reaction temperature range. Therefore, an ideal temperature setting for maximal hydrogen generation could be validated and improved the photothermal synergistic impact on biomass-reformed hydrogen generation.  相似文献   

3.
Developing appropriate photocatalyst with high efficiency is still the basic strategy for practical application of emerging technology. Herein, non-noble metal copper (Cu) nanoparticles were in situ hybrided with TiO2 by a chemical reduction method. The crystal phase and structure were characterized by XRD, SEM, and TEM measurements. Hydrogen production results showed that Cu nanoparticles significantly improved the photocatalytic hydrogen production rate. The hydrogen production rate was as high as 24160.69 μmol g?1 h?1 at 100 °C, which was 36.25 and 8.46 times higher than the hydrogen production rates of pure TiO2 and 0.13 wt% Cu/TiO2 at room temperature, respectively. PL spectra, UV–vis spectra, IR images and photoelectrochemical measurements showed that the plasma-induced photothermal effect of Cu/TiO2 nanoparticles, which raised the temperature of the reaction system and promoted photothermal catalytic performance. Briefly, this work provides a facile fabrication method of noble-metal-free photocatalysts featuring in low-cost and high efficiency. In the future, coupling the photothermal effect of plasmonic Cu to further speed up the kinetics should be another promising research direction for further improving hydrogen production.  相似文献   

4.
Photothermal reforming of biomass-derived hydrocarbons is an efficient approach to generate renewable hydrogen driven by solar. However, the current understanding of the general thermal effect on hydrogen production is limited since the photothermal and thermal radiation from solar is difficult to separate. Herein, an experimental study is carried out by synthesizing a series of photothermal catalysts composed of Ag nanoparticles supported on TiO2 nanoflake (TNF). The structure of the Ag/TNF was examined by XRD, XPS, and HRTEM, respectively. The local temperature rise of the Ag/TNF was detected during the photothermal reforming reaction of the aqueous bio-glycerol, and its influence on H2 yield was analyzed. By introducing different weight ratios of Ag nanoparticles on TNF, the equilibrium temperature was obviously increased due to the localized surface plasmon resonance (LSPR) effect and dynamic balance between LSPR and heat dissipation was found. It was observed that increasing the weight ratio of Ag particles could result in an increased temperature and lower hydrogen yields. In fact, such photothermal reforming hydrogen production was a synergistic effect between photogenerated-electrons and phonons. Therefore, precisely regulating the photothermal effect by controlling the metal nanoparticles loading to achieve proper thermal balance and high catalytic activity is one effective countermeasure to enhance hydrogen production.  相似文献   

5.
Abstract

We have investigated polyvinylalcohol stabilized Au and Ag based nanoparticles supported on titania prepared via sol immobilisation for the anaerobic, ambient temperature reforming of methanol with water for the photocatalytic production of hydrogen. The catalytic activity of the Au/TiO2 catalysts was strongly affected by the metal loading and calcination temperature. Here, we report the preparation and use of supported Au–Ag nanoparticles, based on either the co-reduction or the consecutive reduction of the two metals. Au–Ag supported catalysts were more active than monometallic Au and Ag catalysts and the preparation methodology had a pronounced effect in terms of catalytic activity of the Au–Ag catalysts. In fact, using a consecutive reduction where Au was firstly reduced followed by reduction of Ag gave materials which exhibited the highest catalytic performance.  相似文献   

6.
In recent years, the hydrolysis of Al-based composite powders to produce hydrogen has become a hot topic in the field of hydrogen energy research. However, the hydrogen generation products of Al-based alloys have not been reasonably utilized. For this purpose, this study proposed a novel research idea to achieve the integrated design of hydrogen production and thermal energy storage functions of Al-based composite powders. Specifically, Al-Bi-Cu composite powders with stable hydrogen production were taken as research objects. The hydrogen was obtained by the reaction of Al-Bi-Cu alloy powders with H2O for different reaction times, and then the hydrogen generation products were directly sintered at high temperature to obtain Al-Cu alloy based composite phase change thermal energy storage materials. The results indicated that at 50 °C, the hydrogen yield of Al-Bi-Cu alloy powders in 100min, 200min and 400min are 319.9 mL/g, 428.5 mL/g and 665.8 mL/g, respectively. Importantly, the Al-Cu alloy based composite phase change thermal energy storage materials prepared by the hydrogen generation products exhibited an adjustable phase change temperature (577.3 °C ∼ 598.2 °C), high thermal energy storage density (44.1J/g ∼ 153.5J/g), good thermal cycling stability and structural stability.  相似文献   

7.
Thermal energy harvesting and storage with phase change materials (PCMs) have attracted extensive exploration in solar-thermal utilization. Solving leakage issue of PCMs and improving the energy absorption, storage and transport are facing great challenges. As a typical aerogel with porous structure and strong light absorption, carbon aerogel (CA) becomes an attractive support material for PCMs. In this work, the carbon aerogels reinforced melamine foam (CA/Foam) were prepared by sol-gel polymerization, freeze drying and carbonization. To further optimize the pore structure and optical properties, CO2 activation is implemented to obtain the super black reinforced melamine foam, which is named as activated CA/Foam (ACA/Foam). After vacuum adsorption of PW, the prepared paraffin wax/activated carbon aerogel/foam (PW/ACA/Foam) maintains high thermal storage density of 143.4 J/g and shows excellent thermal stability, which can effectively solve the shortcoming of PCMs leakage due to rich pore structure. Encouragingly, the photothermal conversion efficiency of PW/ACA/Foam composite material can reach 92.1% with 5% weight fraction of resorcinol and formaldehyde in the precursor solution. The thermal conductivity of PW/ACA/Foam is 0.71 W/(m·K), 97.2% higher than pure PW, which will be the potential material for composite PCMs applied in solar energy utilization.  相似文献   

8.
Hydrogen production from the electrolysis of water by sea or lake waters used as electrolyte plays a crucial role in providing sustainable hydrogen production. Production of hydrogen from these natural sources is highly utilized from small scale to complex applications due to water resources' inconsumable potential. In this study, the hydrogen production potential of Turkey's different regions such as the Black Sea, Aegean Sea, Marmara Sea, Mediterranean Sea, Lake Van, Ağcaşar Dam, Yeşilırmak, and Kızılırmak rivers are investigated. Solar energy potential values are used as the current sources for simulating their renewable energy hydrogen production values. According to the results, higher hydrogen production rates are obtained from the Marmara and Lake Van regions. It is concluded that the hydrogen production potential is highly dependent on the pH values of the water source and the salinity rate of seawater that is descending from the Mediterranean Sea to the Black Sea region. Besides, solar radiation, sunshine duration, and water temperature are the other essential factors. Moreover, Mediterranean Sea water (Içel-Anamur) has about 23% higher hydrogen production than Lake Van and has the most increased hydrogen production by 80 L m-2 in May and June.  相似文献   

9.
The TiO2/Mn0.2Cd0.8S hollow heterojunction with Mn/Cd bimetallic synergy is prepared via a continuous chemical-hydrothermal-etching method. There, the TiO2 shell and Mn0.2Cd0.8S nanoparticles were deposited by continuous chemical-hydrothermal method on the surface of SiO2 template, and subsequently the SiO2 template was etched via a chemical method. Evaluated by HER, the as-prepared TiO2/Mn0.2Cd0.8S hollow heterojunction exhibits an obvious photocatalytic enhancement to about ~5822.94 μmol/g∙h(~40 folds of TiO2, ~7 folds of Mn0.2Cd0.8S), which can be mainly ascribed to that, the narrow band gap of Mn0.2Cd0.8S can increase the visible light energy utilization, the TiO2/Mn0.2Cd0.8S heterojunction and Mn/Cd bimetallic synergy can separate/transfer the photo-generated charge carriers efficiently, and the sufficient specific surface areas and actives from 3D hollow structure can promote the charge carrier diffusing into water quickly for achieving H2 generation. Additionally, the hollow 3D structure can provide a decent physical-chemical stability to improve the photocatalytic stability.  相似文献   

10.
氢能制取和储存技术研究发展综述   总被引:1,自引:0,他引:1  
综述了氢能制取和储存技术研究的最新发展现状。生物质制氢、太阳能热化学循环制氢、太阳能半导体光催化制氢、核能制氢等技术具有资源丰富、使用可再生能源的优点,能克服传统电解水制氢能耗高和矿物原料有限的缺点,成为提高制氢效率、实现规模生产的研究重点。加压压缩储氢技术的研究进展主要体现在改进容器材料和研发吸氯物质方面;液化储氢技术研发重点是降低能耗和成本;金属氢化物储氢技术正努力突破储氢密度低的难题。氢能制取、储存技术正在走向实用阶段,重点技术方向是以水为原料,实现大规模、经济、高效和安全地制氢储氢,推动氢能可持续和洁净的利用,促进能源安全。  相似文献   

11.
Designing efficient photocatalytic systems for hydrogen evolution is extremely important from the viewpoint of the energy crisis. Highly crystalline heterostructure catalysts have been established, considering their interface electric field effect and structural features, which can help improve their photocatalytic hydrogen-production activity. In this study, we fabricated a highly crystalline heterojunction consisting of ZnFe2O4 nanobricks anchored onto 2D molybdenum disulfide (MoS2) nanosheets (i.e., ZnFe2O4/MoS2) via a hydrothermal approach. The optimized ZnFe2O4/MoS2 photocatalyst, with a ZnFe2O4 content of 7.5 wt%, exhibited a high hydrogen-production rate of 142.1 μmol h−1 g−1, which was 10.3 times greater than that for the pristine ZnFe2O4 under identical conditions. The photoelectrochemical results revealed that the ZnFe2O4/MoS2 heterojunction considerably diminished the recombination of electrons and holes and promoted efficient charge transfer. Subsequently, the plausible Z-scheme mechanism for photocatalytic hydrogen production under white-LED light irradiation was discussed. Additionally, the influence of cocatalysts on the photocatalytic hydrogen evolution for the ZnFe2O4/MoS2 heterostructure was investigated. This work has demonstrated a simplified coupling of one-dimensional or zero-dimensional structures with 2D nanosheets for improving the photocatalytic hydrogen production activity as well as confirmed that MoS2 is a viable substitute for precious metal-free photocatalysis.  相似文献   

12.
In this work, we compare the activity of unsupported and monoclinic zirconia – supported nickel ferrites, calcined at two different temperatures, for solar hydrogen production by two-step water-splitting thermochemical cycles at low thermal reduction temperature. Commercial nickel ferrite, both as-received and calcined in the laboratory, as well as laboratory made supported NiFe2O4, are employed for this purpose. The samples leading to higher hydrogen yields, averaged over three cycles, are those calcined at 700 °C in each group (supported and unsupported) of materials. The comparison of the two groups shows that higher chemical yields are obtained with the supported ferrites due to better utilisation of the active material. Therefore, the highest activity is obtained with ZrO2-supported NiFe2O4 calcined at 700 °C.  相似文献   

13.
The different configurations of CdSe nanoparticles, Au nanocrystals and TiO2 nanotube arrays play an important role in the photoelectrochemical behavior and photoelectrocatalytic hydrogen production of this heterogeneous photoelectrode system. It is discovered that the photoelectrocatalytic hydrogen production of the TiO2–CdSe–Au photoelectrode (1.724 mmol g−1 h−1) is about 4 times that of the TiO2–Au–CdSe photoelectrode (0.430 mmol g−1 h−1) under visible light irradiation. From the comprehensive investigation of their photoelectrochemical behaviors, it is illustrated that the interfacial electrical field has distinct effects on the separation and transportation of photogenerated carriers in these heterostructure photoelectrodes. The directions of the interfacial electrical fields formed at TiO2–Au and Au–CdSe interfaces are opposite in the TiO2–Au–CdSe photoelectrode, which hinders the separation of photogenerated electron-hole pairs and subsequent transportation of photogenerated carriers. On the contrary, the directions of the interfacial electrical fields formed at TiO2–CdSe and CdSe–Au interfaces are identical in the TiO2–CdSe–Au photoelectrode, which promotes the separation of photogenerated excitons and subsequently enhances their transportation for enlarged photocurrent density. The results of photoelectrocatalytic hydrogen production also confirm our assumption.  相似文献   

14.
In this study, the electrochemical hydrogen storage of bentonite composites containing TiO2 and Au nanoparticles (NPs) has been investigated by cyclic voltammetry (CV) analysis. TiO2 NPs were first deposited on the bentonite substrate by reflux technique. Au NPs were then prepared by laser ablation in liquid (LAL) method under different laser irradiation times (6, 12, and 18 min), and utilized in the decoration of bentonite/TiO2 nanocomposite by physical mixing. X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and elemental mapping were carried out in the characterization of the prepared bentonite/TiO2/Au nanocomposite. The surface and chemical properties of the acquired nanocomposite were analyzed by Brunauer-Emmett-Teller and Fourier transform infrared spectroscopy, respectively. Electrochemical measurement was performed on stainless steel mesh prefabricated electrodes in 1 M KOH electrolyte solution. The B-T/Au nanocomposite prepared under 12 min laser irradiation displayed the highest hydrogen storage capacity (15 Cg-1).  相似文献   

15.
Deposition of Pt NPs with preferred dispersion and morphologies on TiO2 have been the focus of studies in photocatalytic and photoelectrochemical hydrogen production. Green synthesis of TiO2/Pt NPs nanocomposites with narrow size distribution of Pt NPs still remain a challenge. Herein, we report that sucrose is highly efficient for the preparation of well-dispersed TiO2/Pt NPs photocatalysts. Moreover, the sucrose could act as an electron donor, showing higher hydrogen production activity under simulated sunlight than pure water. The as-synthesized photocatalysts have been characterized by techniques of transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX), and diffuse reflectance spectroscopy (DRS). Compared with TiO2/Pt NPs photocatalysts prepared through conventional photodeposition, the photocatalysts as prepared showed higher photocatalytic efficiency. Moreover, the catalyst could be reused easily without apparent degradation of their original photocatalytic activities. This approach presents a promising and low-cost strategy to improve the photocatalytic performance of TiO2 from biomass.  相似文献   

16.
In the present article, a new numerical investigation is conducted to quantify the fluidic flow-photothermal performance of a trihybrid nano-catalyst for biomethane reforming inside a 1 μm micro-reactor on gold-silver nanoparticles coated on titanium oxide (TiO2). The model generates a two-way coupling between heat, mass, fluid flow and electromagnetic profiles to simulate the plasmonic effect for the plasmonic photocatalyst in a micro-boundary layer adjacent to the catalyst. The effect of light wavelength on operating parameters and system performance was investigated and discussed. This included chemical conversion, the lower heating value of the syngas, mole fractions of species in the gaseous product, and the spatiotemporal velocity profiles. It was found that light absorptance by the nanoparticles is highest when visible light wavelength within 570 nm < λ < 590 nm is used to stimulate the plasmonic nanostructure. Also, the chemical conversion reached 81% at an exposure time of 1 μs of visible light. At λ = 570 nm, the produced syngas had a lower heating value of 311 kJ/mol and syngas quality of 0.16, which is suitable for ethanol production. Also, a maximum temperature elevation of 998 K was achieved which is above the minimum temperature required for reforming methane (823 K). The spatiotemporal velocity and chemical conversion profiles across the micro-reactor showed that at exposure times > 5 μs, both profiles become fully developed resulting in the suppression of chemical conversion.  相似文献   

17.
18.
Core-shell structured co-catalyst has been created much attention in photocatalytic hydrogen production due to their efficient electron-hole pair separation, suppression of surface back reaction and long term stability. Here, we report the preparation of CuO@NiO hierarchical nanostructures as a co-catalyst deposited on TiO2 nanospheres for enhanced photocatalytic hydrogen generation. The formation of ultrathin NiO shell over the CuO core was confirmed by TEM analysis. Fabricated core-shell nanostructured CuO@NiO over TiO2 nanospheres was studied for hydrogen evolution under the direct solar light and it showed a high rate of H2 production of 26.1 mmol. h−1. g−1cat. It was scrutinized that the rate of hydrogen production was improved with shell thickness and co-catalyst loading. Systematic investigation on CuO@NiO co-catalyst loading, pH of the medium and glycerol concentration for augmented H2 production. The recorded rate of hydrogen production is almost six folds greater than that of pristine TiO2. In the view of largescale synthesis for alternative energy storage applications, the composited photocatalyst was made of by simple mixing method, which could be scaled up without any loss in photocatalytic activity. Further, the stability test of photocatalyst for continuous use found that 82% of initial photocatalytic activity is retained even after three days.  相似文献   

19.
The MoS2 quantum dots (QDs) were interspersed on anatase TiO2 nanosheets with exposed (001) facets by a facile self-assembly strategy. As expected, the MoS2 QDs/TiO2 nanosheets display an excellent photocatalytic performance for hydrogen production, and its hydrogen evolution rate is 139 μmol/h/g. More importantly, the hydrogen evolution rate of MoS2 QDs/TiO2 nanosheets is almost 4-fold in comparison to that of nude TiO2 nanosheets. Based on the detailed characterizations, it can be obtained that the improved photocatalytic activity for hydrogen production can be ascribed to the particular characteristics of MoS2 QDs, which can intensify the photo-absorption efficiency of TiO2 nanosheets and enhance the separation and transfer efficiency of photo-excited charge carriers. It is anticipated that this work provides a novel paradigm to fabricate the highly-efficient photocatalysts for hydrogen evolution.  相似文献   

20.
Water photolysis is a fundamental concept in which solar-driven water splitting is utilized to generate renewable hydrogen fuel using semiconductor-based electrochemical systems. The engineering design principles for each system configuration, including single, dual/tandem photoelectrodes, tandem photoelectrochemical-photovoltaic, and multi-junction designs are reviewed. Modeling and numerical simulation of photoelectrochemical processes based on up-to-date multi-scale analysis are presented and discussed. In addition, the achievements made in semiconductor photoelectrode materials and the rational engineering methods needed to improve the solar to hydrogen efficiency are demonstrated. Furthermore, some key accomplishments in different aspects, such as electron-hole recombination, stability, photocorrosion, energy band gap, and photocurrent density are discussed. Moreover, key points on the challenges, opportunities and future directions towards commercialization of viable photoelectrochemical reactors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号