首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It appears to be the most economical means of transporting large quantities of hydrogen over great distances by the existing natural gas pipeline network. However, the leakage and diffusion behavior of urban hydrogen blended natural gas and the evolution law of explosion characteristics are still unclear. In this work, a Computational Fluid Dynamics three-dimensional simulation model of semi-confined space in urban streets is developed to study the diffusion process and explosion characteristics of hydrogen-blended natural gas. The influence mechanism of hydrogen blending ratio and ambient wind speed on the consequences of explosion accident is analyzed. And the dangerous area with different environmental wind effects is determined through comparative analysis based on the most dangerous scenarios. Results indicate that the traffic flow changes the diffusion path of the jet, the flammable gas cloud forms a complex profile in many obstacles, high congestion level lead to more serious explosion accidents. Wind effect keeps the flammable gas cloud near the vehicle flow, the narrow gaps between the vehicles aggravate the expansion of the flammable gas cloud. When the wind direction is consistent with the leakage direction, hydrogen blended natural gas is gathered in the recirculation zone due to the vortex effect, which results in more serious accident consequences. With the increase in hydrogen blending ratio, the higher content of H and OH in the gas mixture significantly increases the premixed burning rate, the maximum overpressure rises rapidly when the hydrogen blend level increases beyond 40%. The results can provide a basis for construction safety design, risk assessment of leakage and explosion hazards, and emergency response in hydrogen blended natural gas distribution systems.  相似文献   

2.
Computational fluid dynamic simulations have been performed in order to study the consequences of a hydrogen release from a pressure swing adsorption installation operating at 30 barg. The simulations were performed using FLACS-Hydrogen software from GexCon. The impact of obstruction, partial confinement, leak orientation and wind on the explosive cloud formation (size and explosive mass) and on explosion consequences is investigated. Overpressures resulting from ignition are calculated as a function of the time to ignition.  相似文献   

3.
One of the tasks of the HySafe Network of Excellence was the evaluation of available CFD tools and models for dispersion and combustion in selected hydrogen release scenarios identified as “standard benchmark problems” (SBEPs). This paper presents the results of the HySafe standard benchmark problem SBEP-V11. The situation considered is a high pressure hydrogen jet release from a compressed gaseous hydrogen (CGH2) bus in an underpass. The bus considered is equipped with 8 cylinders of 5 kg hydrogen each at 35 MPa storage pressure. The underpass is assumed to be of the common beam and slab type construction with I-beams spanning across the highway at 3 m centres (normal to the bus), plus cross bracing between the main beams, and light armatures parallel to the bus direction. The main goal of the present work was to evaluate the role of obstructions on the underside of the bridge deck on the dispersion patterns and assess the potential for hydrogen accumulation. Four HySafe partners participated in this benchmark, with 4 different CFD codes, ADREA-HF, CFX, FLACS and FLUENT. Four scenarios were examined in total. In the base case scenario 20 kg of hydrogen was released in the basic geometry. In Sensitivity Test 1 the release position was moved so that the hydrogen jet could hit directly the light armature on the roof of the underpass. In Sensitivity Test 2 the underside of the bridge deck was flat. In Sensitivity Test 3 the release was from one cylinder instead of four (5 kg instead of 20). The paper compares the results predicted by the four different computational approaches and attempts to identify the reasons for observed disagreements. The paper also concludes on the effects of the obstructions on the underside of the bridge deck.  相似文献   

4.
The explosion venting is an effective way to reduce hydrogen-air explosion hazards, but the explosion venting has been less touched in an obstructed container. The present study mainly focused on the effects of hydrogen concentration and film thickness on the explosion venting in a small obstructed rectangular container. High speed schlieren photography was employed to obtain the flame fine structure and velocity. Pressure transducers were used to measure the overpressure nearby the obstacle. The experimental results show that the obstacle has a significant effect on the flame shape, tip speed and overpressure. In the process of flame evolution, the flame surface becomes more wrinkled with time after the tulip flame. Compared with the cases without the obstacle, the flame surface becomes more distorted and wrinkled downstream of the obstacle under the influence of obstacle enhanced turbulence and flow instability. Upstream of the obstacle, the lower part of the flame surface becomes concave while the upper part shows convex. The pressure histories show that the maximum overpressure increases with the hydrogen concentration in the range of 11.8%–23.7%. Two main pressure peaks were observed for all hydrogen concentrations in the presence of the obstacle. The Helmholtz oscillations appear after the second pressure peak and its duration increases slightly when the hydrogen concentration increases. The combined effect of the obstacle and hydrogen concentration on the second peak overpressure is more significant than on the first peak overpressure. Moreover, the maximum overpressure shows a monotonic increase with the film thickness.  相似文献   

5.
The aim of the study is to identify and quantify the additional risks related to hydrogen explosions during the operation of a hydrogen-driven car. In a first attempt the accidents or failures of a simple one-tank hydrogen storage system have been studied as a main source of risk. Three types of initiators are taken into account: crash accidents, fire accidents without crash (no other cars are involved) and hydrogen leakages in normal situation with following ignition. The consequences of hydrogen ignition and/or explosion depend strongly on environmental conditions (geometry, wind, etc.), therefore the different configurations of operational and environmental conditions are specified.Then Event Tree/Fault Tree methods are applied for the risk assessment.The results of quantification permit to draw conclusions about the overall added risk of hydrogen technology as well as about the main contributors to the risk. Results of this work will eventually contribute to the on-going pre-normative research in the field of hydrogen safety.  相似文献   

6.
Hydrogen has been used as chemicals and fuels in industries for last decades. Recently, it has become attractive as one of promising green energy candidates in the era of facing with two critical energy issues such as accelerating deterioration of global environment (e.g. carbon dioxide emissions) as well as concerns on the depletion of limited fossil sources. A number of hydrogen fueling stations are under construction to fuel hydrogen-driven vehicles. It would be indispensable to ensure the safety of hydrogen station equipment and operating procedure in order to prevent any leak and explosions of hydrogen: safe design of facilities at hydrogen fueling stations e.g. pressurized hydrogen leak from storage tanks. Several researches have centered on the behaviors of hydrogen ejecting out of a set of holes of pressurized storage tanks or pipes. This work focuses on the 3D simulation of hydrogen leak scenario cases at a hydrogen fueling station, given conditions of a set of pressures, 100, 200, 300, 400 bar and a set of hydrogen ejecting hole sizes, 0.5, 0.7, 1.0 mm, using a commercial computational fluid dynamics (CFD) tool, FLACS. The simulation is based on real 3D geometrical configuration of a hydrogen fueling station that is being commercially operated in Korea. The simulation results are validated with hydrogen jet experimental data to examine the diffusion behavior of leak hydrogen jet stream. Finally, a set of marginal safe configurations of fueling facility system are presented, together with an analysis of distribution characteristics of blast pressure, directionality of explosion. This work can contribute to marginal hydrogen safety design for hydrogen fueling stations and a foundation on establishing a safety distance standard required to protect from hydrogen explosion in Korea being in the absence of such an official requirement.  相似文献   

7.
The development and application of hydrogen energy in power generation, automobiles, and energy storage industries are expected to effectively solve the problems of energy waste and pollution. However, because of the inherent characteristics of hydrogen, it is difficult to maintain high safety during production, transportation, storage, and utilization. Therefore, to ensure the safe and reliable utilization of hydrogen, its characteristics relevant to leakage and diffusion, ignition, and explosion must be analyzed. Through an analysis of literature, in combination with our practical survey analysis, this paper reviews the key issues concerning hydrogen safety, including hydrogen incident investigation, hydrogen leakage and diffusion, hydrogen ignition, and explosion.  相似文献   

8.
Increasing scarcity of fossil fuels makes the deployment of hydrogen in combination with renewable energy sources, nuclear energy or the utilization of electricity from full time operation of existing power stations an interesting alternative. A pre-requisite is, however, that the safety of the required infrastructure is investigated and that its design is made such that the associated risk is at least not higher than that of existing supplies. Therefore, a risk analysis considering its most important objects such as storage tanks, filling stations, vehicles as well as heating and electricity supplies for residential buildings was carried out. The latter are considered as representative of the entire infrastructure. The study is based on fault and event tree analyses, wherever required, and consequence calculations using the PHAST code. The procedure for evaluating the risk and corresponding results are presented taking one of the objects as an example.  相似文献   

9.
The consequences of hydrogen leaks and explosions are predicted for the sake of the safety in hydrogen refueling stations. In this paper, the effect of wind speed on hydrogen leak and diffusion is analyzed in different regions of a hydrogen refueling station, and the influence of delayed ignition time on hydrogen explosion after an accidental hydrogen leak is further studied by numerical simulation. Results show that the effect of wind speed on the probability of hydrogen fires is distinctive in different regions of hydrogen refueling station. The size of combustible clouds in the trailer front region and the outer region increases in the low wind speed case, and the front of combustible clouds is formed in a spherical shape in the outer region, which can greatly increase the probability of hydrogen explosion. However, the high wind speed may cause an increase of the risk of accidents in the near ground region. Moreover, a non-linear correlation is shown between the rate of combustible cloud dissipation and wind speed after the hydrogen stops leaking. In addition, it is found that an increase in delayed ignition time may lead to an increase in explosion intensity, which is related with the larger high temperature area and stronger explosion overpressure. Two flame fronts and the reverse propagation of the explosion overpressure can be observed, when the delayed ignition time is larger.  相似文献   

10.
11.
This paper presents a numerical study of dispersion and flammable volume of hydrogen in enclosures using a simple analytical method and a computational fluid dynamics (CFD) code. In the analytical method, the interface height and hydrogen volume fraction of the upper layer are obtained based on mass and buoyancy conservation while the centreline hydrogen volume fraction is derived from similarity solutions for buoyant jets. The two methods (CFD and analytical) are used to simulate an experiment conducted by INERIS, consisting of a 1 g/s hydrogen release for 240 s through a 20 mm diameter orifice into an enclosure. It is found that the predicted centreline hydrogen concentration by both methods agrees with each other and is also in good agreement with the experiment. There are however differences in the calculated total flammable volume because the analytical method does not consider local mixing and diffusion in the upper layer which is assumed uniformly well mixed. The CFD model, in comparison, incorporates the diffusion and stratification phenomena in the upper layer during the mixing stage.  相似文献   

12.
Thermal hazards from an under-expanded (900 bar) hydrogen jet fire have been numerically investigated. The simulation results have been compared with the flame length and radiative heat flux measured for the horizontal jet fire experiment conducted at INERIS. The release blowdown characteristics have been modelled using the volumetric source as an expanded implementation of the notional nozzle concept. The CFD study employs the realizable k-ε model for turbulence and the Eddy Dissipation Concept for combustion. Radiation has been taken into account through the Discrete Ordinates (DO) model. The results demonstrated good agreement with the experimental flame length. Performance of the model shall be improved to reproduce the radiative properties dynamics during the first stage of the release (time < 10 s), whereas, during the remaining blowdown time, the simulated radiative heat flux at five sensors followed the trend observed in the experiment.  相似文献   

13.
To study the effects of hydrogen addition on the explosion characteristics (the explosion pressure and maximum rate of pressure rise) of n-hexane/air mixtures, experiments were performed in a cylindrical vessel at 100 kPa, 353 K, with equivalence ratios of 0.8–1.7 and hydrogen addition range from 0% to 80%. Concurrently, flame images were captured by high-speed schlieren photography to study the burning performance. The results indicate that both the explosion pressure and maximum pressure rise rate increase with the increase in hydrogen addition in terms of the lean n-hexane/hydrogen/air mixtures. With respect to the richer mixtures, however, the inverse tendency is observed. With increasing hydrogen fractions, the explosion pressure and maximum pressure rise rate decrease. The peak values of the explosion pressure and maximum pressure rise rate shift to the leaner mixture with increased hydrogen proportion. Moreover, the laminar burning velocities of n-hexane/hydrogen/air mixture were also obtained via the expanding spherical method and the pressure-time histories, respectively. Variation of laminar burning velocity with hydrogen proportion from both methods were studied as well, and the results show that the laminar burning velocity changes significantly under different hydrogen addition.  相似文献   

14.
The number of hydrogen refuelling stations (HRSs) is steadily growing worldwide. In China, the first renewable hydrogen refuelling station has been built in Dalian for nearly 3 years. FLACS software based on computational fluid dynamics approach is used in this paper for simulation and analysis on the leakage and explosion of hydrogen storage system in this renewable hydrogen refuelling station. The effects of wind speed, leakage direction and wind direction on the consequences of the accident are analyzed. The harmful area, lethal area, the farthest harmful distance and the longest lethal distance in explosion accident of different accident scenarios are calculated. Harmful areas after explosion of different equipments in hydrogen storage system are compared. The results show that leakage accident of the 90 MPa hydrogen storage tank cause the greatest harm in hydrogen explosion. The farthest harmful distance caused by explosion is 35.7 m and the farthest lethal distance is 18.8 m in case of the same direction of wind and leakage. Moreover, it is recommended that the hydrogen tube trailer should not be parked in the hydrogen refuelling station when the amount of hydrogen is sufficient.  相似文献   

15.
At the DIMNP (Department of Mechanical, Nuclear and Production Engineering) laboratories of University of Pisa (Italy) a pilot plant called HPBT (Hydrogen Pipe Break Test) was built in cooperation with the Italian Fire Brigade Department. The apparatus consists of a 12 m3 tank connected with a 50 m long pipe. At the far end of the pipeline a couple of flanges have been used to house a disc with a hole of the defined diameter. The plant has been used to carry out experiments of hydrogen release. During the experimental activity, data have been acquired about the gas concentration and the length of release as function of internal pressure and release hole diameter. The information obtained by the experimental activity will be the basis for the development of a new specific normative framework arranged to prevent fire and applied to hydrogen. This study is focused on hydrogen concentration as function of wind velocity and direction. Experimental data have been compared with theoretical and computer models (such as CFD simulations).  相似文献   

16.
In the present study, the dispersion process of hydrogen leaking from an FCV (Fuel Cell Vehicle) in an underground parking garage is analyzed with numerical simulations in order to assess hazards and associated risks of a leakage accident. The temporal and spatial evolution of the hydrogen concentration as well as the flammable region in the parking garage was predicted numerically. The volume of the flammable region shows a non-linear growth in time with a latency period. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance to relieve accumulation of the hydrogen gas. It is found that expansion of the flammable region is delayed by the fan via enhanced mixing near the boundary of the flammable region. The present numerical results can be useful to analyze safety issues in automotive applications of hydrogen.  相似文献   

17.
Exploration of thermal performances of composite high-pressure hydrogen storage tank under fire exposure were critical issues to reduce the risk of tank rupture. Three bonfire tests of type III tanks of 210 L-35 MPa with full compressed hydrogen were exposed to a pool fire to study the response behaviours in fire scenarios. Detailed data on the tank wall temperature and inner pressure were presented in this work. Prototype bonfire tests for the type III tank indicated the failure pressure limits amounted to 41.1–41.8 MPa (average 41.4 MPa). Two consequences (rupture and hydrogen blowdown) will be caused when the inner pressure beyond this limits in fire scenario. The loading-bearing capacity of the tank reduced nearly 3 times under the prescribed fire condition when compared to its average burst pressure of 123.5 MPa conducted from the hydraulic burst test. Results also shown that fire resistance rating (FRR, time to rupture) of the three tanks were 784, 666, and 596, respectively. The FRR got shorter when the tank was exposed in the engulfing fire in advance at hydrogen blowdown case.  相似文献   

18.
The dynamic blow-down process of a high pressure gaseous hydrogen (GH2) reservoir in case of a small leak is a complex process involving a chain of distinct flow regimes and gas states. This paper presents models to predict the hydrogen concentration and velocity field in the vicinity of a postulated small leak. An isentropic expansion model with a real gas equation of state for normal hydrogen is used to calculate the time dependent gas state in the reservoir and at the leak. The subsequent gas expansion to 0.1 MPa is predicted with a zero-dimensional model. The gas conditions after expansion serve as input to a newly developed integral model for a round free turbulent H2-jet into ambient air. Predictions are made for the blow-down of hydrogen reservoirs with 10, 30 and 100 MPa initial pressure. A normalized hydrogen concentration field in the free jet is presented which allows for a given leak scenario the prediction of the axial and radial range of flammable H2-air mixtures.  相似文献   

19.
Hydrogen energy is expanding world-widely in recent years, while hydrogen safety issues have drawn considerable attention. It is widely accepted that accidental hydrogen release in an open-air environment will disperse quickly, hence not causing significant hydrogen hazards. A hydrogen hazard is more likely to occur when hydrogen is accidentally released in a confined place, i.e. parking garages and tunnels. Prediction the main accident process, including the hydrogen release, dispersion, and combustion, is important for hydrogen safety assessment, and ensuring the safety installations during accidents. Hence, a postulated accident scenario induced by the operation of Thermal Pressure Relief Device in a tunnel is analysed for hydrogen fuel cell vehicles with GASFLOW-MPI in this study. GASFLOW-MPI is a well validated parallel CFD code focusing on the transport, combustion, and detonation of hydrogen. It solves compressible Navier-Stokes equations with a powerful all-speed Arbitrary-Lagrangian-Eulerian (ALE) method; hence can cover both the non-compressible flow during the hydrogen release and dispersion phases, and the compressible flow during deflagration and detonation. In this study, a 3D model of real-scaled tunnel is modelled, firstly. Then the hydrogen dispersion in the tunnel is calculated to evaluate the risk of Flame acceleration and the Deflagration-Detonation Transient (DDT). The case with jet fire is analysed with assuming that the hydrogen is ignited right after being injected forming a jet fire in the tunnel, the consequence of this case is limited considering the small hydrogen inventory. The detonation in the tunnel is calculated by assuming a strong ignition at the top of the tunnel at an unfavourable time and location. The pressure loads are calculated to evaluate the consequence of the hazard. The analysis shows that the GASFLOW-MPI is applicable at a widely range for tunnel accidents, meanwhile, the safety issues related to tunnel accidents is worthy further study considering the complexity of tunnels.  相似文献   

20.
The core-melt in Fukushima-Daiichi Unit 1 represents a new class of severe accidents in which combustible gas from core degradation leaked from the containment into the surrounding air-filled reactor building, formed there a highly reactive gas mixture, and exploded 25 h after begin of the station black-out. Since TMI-2 hydrogen safety research and management has focussed on processes and counter-measures inside the containment but the reactor building remained unprotected against hydrogen threats. The code GASFLOW-MPI is currently under development to simulate hydrogen behaviors, including distribution and combustion, for scenarios with containment leakage.This paper describes a first analysis of the hydrogen explosion in Unit 1. It investigates gas dispersion in the reactor building, assuming a leak at the drywell head flange, shows the evolution of a stratified, inhomogeneous H2–O2–N2–steam mixture in the refueling bay, simulates the combustion of the reactive gas mixture, and predicts pressure loads to walls and internal structures of the reactor building. The blast wave propagated essentially sideways, which explains why all side walls were blown out and the ceiling just collapsed onto the floor of the refueling bay. The blast wave propagation into the free environment was also simulated. The over-pressure amplitudes are sufficiently high to cause damage to adjacent buildings and to injure people. The hitherto existing presumption that the blow-out panel of Unit 2 was removed by the Unit 1 explosion can be confirmed which likely prevented a hydrogen explosion in the Unit 2.GASFLOW-MPI provides validated models for the integral simulations of leakage related core-melt scenarios. Furthermore, the code contains extensively tested submodels for catalytic recombiners, igniters and burst foils, which allow design of new hydrogen risk mitigation systems for currently unprotected spaces in reactor buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号