首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the coal to hydrogen conversion can be significantly enhanced by introducing catalysts. The catalysts are, however, commonly deactivated by irreversible interaction with mineral matters in coal. This work addresses hydrogen production via steam gasification of ash free coals. Following the production of ash free coals (AFCs) derived from various raw coals (brown, bituminous, and coking coal), fixed-bed steam gasification of the AFCs was performed as a function of temperature and which was compared with one another and also with that of the matching raw coals. In the absence of a catalyst, AFCs produced from different parent coals exhibited similarly low gasification reactivity, comparable to a high rank coal (coking coal) at 700 °C. As expected, the reaction became faster with increasing temperature in the range, 700–900 °C. The steam gasification of AFCs was highly activated by K2CO3 above 700 °C. It was very likely that water–gas shift reaction associated with the gasification of AFCs was also catalyzed.  相似文献   

2.
Hydrogen and syngas production from sewage sludge via steam gasification   总被引:1,自引:0,他引:1  
High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 °C was found to be 0.076 ggas gsample−1. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes.  相似文献   

3.
Near-critical water gasification (NCWG) and steam reforming (SR) were investigated for the production of hydrogen from a biomass model compound (glucose) using fixed bed tubular reactor. Ruthenium/carbon and nickel/yttria stabilized zirconia (YSZ) were utilized to enhance the reaction rates of the two processes for NCWG and SR, respectively. NCWG experiments were performed at 200 bar and 360–450 °C, while SR experiments were conducted at 500–800 °C and atmospheric pressure. Although in both cases complete carbon gasification is achieved, gas composition, hydrogen selectivity and overall energy efficiency show strong dependencies on the type of process itself and the associated operating conditions. It is shown that operating the reforming reaction of glucose at high pressures and low temperatures (NCWG) results in a significant amount of methane and trace amounts of carbon monoxide. In contrast, gasification of glucose at atmospheric pressures and high temperatures (SR) leads to a methane-free gas stream that contains few percents of carbon monoxide. Considering energy recovery and neglecting the heat losses, the maximum cold gas efficiency of the NCWG and SR reached 78% and 91%, respectively. The features of the two catalytic reaction processes are discussed in terms of the experiments and process simulations.  相似文献   

4.
城市生活垃圾气化熔融焚烧技术   总被引:2,自引:0,他引:2  
王华 《能源工程》2002,(5):21-24
近年来,为防止全球气候变暖,社会上对环境保护的要求日益严格。尤其是要求城市生活垃圾处理最大限度地采用无害化技术,抑制二恶英的排放。能够遏制二恶英产生和排放的无害化城市生活垃圾气化熔融焚烧技术被提出。本技术一般分两类,一类为垃圾气化 灰渣熔融焚烧技术,该技术的工艺流程为:先将城市生活垃圾在500-600℃温度下的热解气化制得可燃气体,制得的气体再根据用途进一步精制,垃圾中95%以上的含氯物质经济去所后所剩下的含碳灰渣在温度为1300℃以上的熔融燃烧设备中进行熔融处理,原垃圾中99.8%以上二恶英可被分解掉,无害化熔融渣可以多种用途;另一类为垃圾直接气化熔融焚烧技术,该技术的工艺流程为:交垃圾在温度1350-1500℃的熔融燃烧设备中进行熔融处理,原垃圾中的99.8%以上的二恶英可被分解掉。文章介绍新型城市生活垃圾气化熔融焚烧技术。  相似文献   

5.
Exergy analysis of hydrogen production from steam gasification of biomass was reviewed in this study. The effects of the main parameters (biomass characteristics, particle size, gasification temperature, steam/biomass ratio, steam flow rate, reaction catalyst, and residence time) on the exergy efficiency were presented and discussed. The results show that the exergy efficiency of hydrogen production from steam gasification of biomass is mainly determined by the H2 yield and the chemical exergy of biomass. Increases in gasification temperatures improve the exergy efficiency whereas increases in particle sizes generally decrease the exergy efficiency. Generally, both steam/biomass ratio and steam flow rate initially increases and finally decreases the exergy efficiency. A reaction catalyst may have positive, negative or negligible effect on the exergy efficiency, whereas residence time generally has slight effect on the exergy efficiency.  相似文献   

6.
In the present study the catalytic steam gasification of MSW to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the catalyst and reactor temperature on yield and product composition was studied at the temperature range of 750–950 °C, with a steam to MSW ratio of 0.77, for weight hourly space velocity of 1.29 h−1. Over the ranges of experimental conditions examined, calcined dolomite revealed better catalytic performance, at the presence of steam, tar was completely decomposed as temperature increases from 850 to 950 °C. Higher temperature resulted in more H2 and CO production, higher carbon conversion efficiency and dry gas yield. The highest H2 content of 53.29 mol%, and the highest H2 yield of 38.60 mol H2/kg MSW were observed at the highest temperature level of 950 °C, while, the maximum H2 yield potential reached 70.14 mol H2/kg dry MSW at 900 °C. Syngas produced by catalytic steam gasification of MSW varied in the range of 36.35–70.21 mol%. The char had a highest ash content of 84.01% at 950 °C, and negligible hydrogen, nitrogen and sulphur contents.  相似文献   

7.
The effect mechanism of calcium oxide (CaO) addition on gasification of pyrolytic volatiles as a key sub-process in the absorption-enhanced steam gasification of biomass (AESGB) for H2 production at different conditions was investigated using a two-stage fixed-bed pyrolysis–gasification system. The results indicate that CaO functions as a CO2 absorbent and a catalyst in the volatiles gasification process. CaO triggers the chemical equilibrium shift to produce more H2 and accelerates volatile cracking and gasification reactions to obtain high volatile conversion rates. Increasing the gasification temperature could improve the reaction rate of cracking and gasification of volatiles as well as the catalytic effect of CaO, which continuously increase H2 yield. When the gasification temperature exceeds 700 °C, the sharp decrease in CO2 absorption capability of CaO drastically increases the CO2 concentration and yield, which significantly decrease H2 concentration. The appropriate temperature for the absorption-enhanced gasification process should be selected between 600 °C and 700 °C in atmospheric pressure. Increasing the water injection rate (represented as the mass ratio of steam to biomass) could also improve H2 yield. The type of biomasses is closely associated with H2 yield, which is closely related to the volatile content of biomass materials.  相似文献   

8.
The technologies and the processes for the use of biomass as an energy source are not always environmental friendly. It is worth to develop approaches aimed at a more sustainable exploitation of biomass, avoiding whenever possible direct combustion and rather pursuing fuel upgrade paths, also considering direct conversion to electricity through fuel cells. In this context, it is of particular interest the development of the biomass gasification technology for synthesis gas (i.e., syngas) production, and the utilization of the obtained gas in fuel cells systems, in order to generate energy from renewable resources. Among the different kind of fuel cells, SOFCs (solid oxide fuel cells), which can be fed with different type of fuels, seem to be also suitable for this type of gaseous fuel. In this work, the syngas composition produced by means of a continuous biomass steam gasifier (fixed bed) has been characterized. The hydrogen concentration in the syngas is around 60%. The system is equipped with a catalytic filter for syngas purification and some preliminary tests coupling the system with a SOFCs stack are shown. The data on the syngas composition and temperature profile measured during the experimental activity have been used to calibrate a 2-dimensional thermodynamic equilibrium model.  相似文献   

9.
10.
Wastes produced during oil palm production from agro-industries have great potential as a source of renewable energy in agriculturally rich countries, such as Thailand and Malaysia. Clean chemical energy recovery from oil palm residual branches via steam gasification is investigated here. A semi-batch reactor was used to investigate the gasification of palm trunk wastes at different reactor temperatures in the range of 600 to 1000 °C. The steam flow rate was fixed at 3.10 g/min. Characteristics and overall yield of syngas properties are presented and discussed. Results show that gasification temperature slightly affects the overall syngas yield. However, the chemical composition of the syngas varied tremendously with the reactor temperature. Consequently, the syngas heating value and ratio of energy yield to energy consumed were found to be strongly dependent on the reactor temperature. Both the heating value and energy yield ratio increased with increase in reactor temperature. Gasification duration and the steam to solid fuel ratio indicate that reaction rate becomes progressively slower at reactor temperatures of less than 700 °C. The results reveal that steam gasification of oil palm residues should not be carried out at reactor temperatures lower than 700 °C, since a large amount of steam is consumed per unit mass of the sample in order to gasify the residual char.  相似文献   

11.
The present work deals with a study coupling experiments and modeling of catalytic steam gasification of municipal solid waste (MSW) for producing hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor. The influence of steam to MSW ratios (S/M) on gas production and composition was studied at 900 °C over the S/M range of 0.39–1.04, for weight hourly space velocity (WHSV) in the range of 1.22–1.51 h−1. Over the ranges of experimental conditions examined, calcined dolomite revealed better catalytic performance at the presence of steam. H2 and CO2 contents increased with S/M increasing, while CO and CH4 contents decreased sharply, the contents of CH4, C2H4 and C2H6 were relatively small, and the influence of S/M was insignificant. The highest H2 content of 53.22 mol %, the highest H2 yield of 42.98 mol H2/kg MSW, and the highest H2 potential yield of 59.83 mol H2/kg MSW were achieved at the highest S/M level of 1.04. Furthermore, there was a good agreement between the experimental gas composition and that corresponding to thermodynamic equilibrium data calculated using GasEq model. Consequently, a kinetic model was proposed for describing the variation of H2 yield and carbon conversion efficiency with S/M during the catalytic steam gasification of MSW. The kinetic model revealed a good performance between experimental results and the kinetic model.  相似文献   

12.
In the SER (sorption enhanced reforming) gasification process a nitrogen-free, high calorific product gas can be produced. In addition, due to low gasification temperatures of 600–750 °C and the use of limestone as bed material, in-situ CO2 capture is possible, leading to a hydrogen-rich and carbon-lean product gas. In this paper, results from a bubbling fluidised bed gasification model are compared to results of process demonstration tests in a 200 kWth pilot plant.Based upon that, a concept for the hydrogen production via biomass SER gasification is studied in terms of efficiency and feasibility. Capital and operational expenditures as well as hydrogen production costs are calculated in a techno-economic assessment study. Furthermore, market framework conditions are discussed under which an economic hydrogen production via SER gasification is possible.  相似文献   

13.
Process modeling and simulation are very important for new designs and estimation of operating variables. This study describes a new process for the production of hydrogen from lignocellulosic biomass gasification tars. The main focus of this research is to increase hydrogen production and improve the overall energy efficiency of the process. In this study, Aspen HYSYS software was used for simulation. The integration structure presented in this research includes sections like tar reforming and ash separation (Ash), combined heat and power cycle (CHP), hydrogen sulfide removal unit (HRU), water-gas shift (WGS) reactor, and gas compression as well as hydrogen separation from a mixture of gases in pressure swing adsorption (PSA). It was found that the addition of CHP cycle and the use of the plug flow reactor (PFR) model, firstly, increased the overall energy efficiency of the process by 63% compared to 29.2% of the base process. Secondly it increased the amount of hydrogen production by 0.518 kmol (H2)/kmol Tar as compared with 0.475 of the base process. Process analysis also demonstrated that the integrated process of hydrogen production from biomass gasification tars is carbon neutral.  相似文献   

14.
《能源学会志》2019,92(5):1502-1518
The steam gasification characteristics of coal char produced two sub-bituminous coals of different origin have been investigated through modelling and experiments. The gasification experiments are carried out in an Isothermal mass loss apparatus over the temperature range of 800–900 °C using a gas mixture of 65% steam and 35% N2. A fully transient single particle gasification model, based on the random pore model, is developed incorporating reaction kinetics, heat and mass transport inside the porous char particle and the gas film. Stefan-Maxwell equation and Knudson diffusion are incorporated in the multi-component diffusion of species and pore diffusion. The model is validated with the experimental data of the present authors as well as that reported in the literature. The particle centre temperature is found to increase, then decrease and increase again to reach the reactor temperature finally, and the trend is more prominent for the larger particles. The pore opening phenomenon is more evident in SBC2 char, leading to a final char porosity of 0.65 vis-à-vis 0.52 in SBC1 and making it more reactive. Temporal evolution of contours of carbon conversion and concentration of other gaseous species like steam, H2O, H2, CO and CO2 in the particle are computed to investigate the gasification process. A higher temperature is found to favour both the rate peak and the total production of H2 for both the chars. The total H2 production from SBC2 char is found to be 0.0189 mol and 0.0236 mol at 800 and 850 °C, while the same for SBC1 char is0.0232 mol and 0.0290 mol respectively. The reaction follows the shrinking core model at the outset, shifting to the shrinking reactive core model subsequently.  相似文献   

15.
Biomass gasification is a prevailing approach for mitigating irreversible fossil fuel depletion. In this study, palm empty fruit bunch (EFB) was steam-gasified in a fixed-bed, batch-fed gasifier, and the effect of four control factors—namely torrefaction temperature for EFB pretreatment, gasification temperature, carrier-gas flow rate, and steam flow rate—on syngas production were investigated. The results showed that steam flow rate is the least influential control factor, with no effect on syngas composition or yield. The gasification temperature of biomass significantly affects the composition of syngas generated during steam gasification, and the H2/CO ratio increases by approximately 50% with an increase in temperature ranging from 680 °C to 780 °C. The higher H2/CO ratio at a lower gasification temperature increased the energy density of the combustible constituents of the syngas by 3.43%.  相似文献   

16.
This work investigates the opportunity of retrofitting existing small-scale gasifiers shifting from combined heat and power (CHP) to hydrogen and biofuels production, using steam and biomass residues (woodchips, vineyard pruning and bark). The experiments were carried out in a batch reactor at 700 °C and 800 °C and at different steam flow (SF) rates (0.04 g/min and 0.20 g/min). The composition of the producer gas is in the range of 46–70 % H2, 9–29 % CO, 12–27 % CO2, and 2–6 % CH4. A producer gas specific production factor of approx. 10 NLpg/gchar can be achieved when the lower SFs are used, which allows to provide 80 % of the hydrogen concentration required for biomethanation and MeOH synthesis. As for FT synthesis, an optimal H2/CO ratio of approx. 2 can be achieved. The results of this work provide further evidence towards the feasibility of hydrogen and biofuels generation from residual biomass through steam gasification.  相似文献   

17.
Demands for the decline of CO2 emissions resulted in a significant transformation of the energy systems working on carbon sources towards more sustainable, clean, and renewable characteristics. Hydrogen is emerging as a secondary energy vector with ever-increasing importance in the decarbonisation progress. Indeed, hydrogen, a green and renewable energy source, could be produced from steam gasification of plant-originated lignocellulosic biomass. In this current review, key factors affect the hydrogen production yield from steam gasification of plant-originated lignocellulosic biomass, including the design of the gasifier, temperature, pressure, and steam-to-biomass ratio, steam flow rate, moisture and particle size of fed biomass, and catalysts were thoroughly analysed. Moreover, the effects of the abovementioned factors on the reduction of tar formation, which is also a key parameter towards ensuring the trouble-free operation of the reactor, were critically evaluated. More importantly, the separation of produced hydrogen from steam gasification of biomass and challenges over technological, environmental, and economic aspects of biomass gasification were also presented in detail. In addition, this paper is also profiling the prospect of Vietnam in fulfilling its hydrogen economy potential because Vietnam has vast biomass due to its tropical weather and availability of arable land, providing abundant lignocellulosic biomass with 45% of agricultural waste, 30% of firewood, and 25% of other sources. Besides, some primary factors hindering the broad application of biomass for hydrogen production were indicated. Finally, some solutions for implementing the hydrogenization strategy in Vietnam have also been discussed.  相似文献   

18.
Large amount of food waste is generated from Indian kitchens and disposing off such a large amount possesses a great challenge in terms of environmental degradation and viable food waste processing technology. In this work, steam gasification was tested as an alternative viable technology to process the kitchen food waste. Preliminary study was carried out at low temperature on steam gasification in a fixed bed reactor to study the influence of steam flow rate (SFR) and temperature on the syngas yield, syngas composition, hydrogen yield. Performance parameters such as carbon conversion efficiency (CCE), and apparent thermal efficiency (ATE) are also calculated. Steam flow rates are varied from 0.125 mL/min to 0.75 mL/min and the temperatures are varied from 700 °C to 800 °C. The highest hydrogen yield is obtained at 0.5 mL/min SFR and 800 °C temperature and its highest value is 1.2 m3/kg. The highest value of performance parameters, CCE and ATE are found to be 63% and 1.8.  相似文献   

19.
The effect of biomass water leaching on H2 production, as well as, prediction of ash thermal behavior and formation of biomass tar during high temperature steam gasification (HTSG) of olive kernel is the main aim of the present work. Within this study raw olive kernel samples (OK1, OK2) and a pre-treated one by water leaching (LOK2) were examined with regard to their ash fouling propensity and tar concentration in the gaseous phase. Two temperatures (T = 850 and 950 °C) and a constant steam to biomass ratio (S/B = 1.28) were chosen in order to perform the steam gasification experiments. Results indicated that considering the samples' ash thermal behavior, it seemed that water leaching improved the fusibility behavior of olive kernel; however, it proved that water leaching does not favour tar steam reforming, while at the same time decreases the H2 yield in gas product under air gasification conditions, due to possible loss of the catalytic effect of ash with water leaching.  相似文献   

20.
This paper investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen rich gas production using pilot scale fluidized bed gasifier under atmospheric condition. The effect of temperature (600–750 °C) and steam to biomass ratio (1.5–2.5 wt/wt) on hydrogen (H2) yield, product gas composition, gas yield, char yield, gasification and carbon conversion efficiency, and lower heating values are studied. The results show that H2 hydrogen composition of 82.11 vol% is achieved at temperature of 675 °C, and negligible carbon dioxide (CO2) composition is observed at 600 °C and 675 °C at a constant steam to biomass ratio of 2.0 wt/wt. In addition, maximum H2 yield of 150 g/kg biomass is observed at 750 °C and at steam to biomass ratio of 2.0 wt/wt. A good heating value of product gas which is 14.37 MJ/Nm3 is obtained at 600 °C and steam to biomass ratio of 2.0 wt/wt. Temperature and steam to biomass ratio both enhanced H2 yield but temperature is the most influential factor. Utilization of adsorbent and catalyst produced higher H2 composition, yield and gas heating values as demonstrated by biomass catalytic steam gasification and steam gasification with in situ CO2 adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号