首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During an accidental release, hydrogen disperses very quickly in air due to a relatively high density difference. A comprehensive understanding of the transient behavior of hydrogen mixing and the associated flammability limits in air is essential to support the fire safety and prevention guidelines. In this study, a buoyancy diffusion computational model is developed to simultaneously solve for the complete set of equations governing the unsteady flow of hydrogen. A simple vertical cylinder is considered to investigate the transient behavior of hydrogen mixing, especially at relatively short times, for different release scenarios: (i) the sudden release of hydrogen at the cylinder bottom into air with open, partially open, and closed tops, and (ii) small hydrogen jet leaks at the bottom into a closed geometry. Other cases involving the hydrogen releases/leaks at the cylinder top are also explored to quantify the relative roles of buoyancy and diffusion in the mixing process. The numerical simulations display the spatial and temporal distributions of hydrogen for all the configurations studied. The complex flow patterns demonstrate the fast formation of flammable zones with implications in the safe and efficient use of hydrogen in various applications.  相似文献   

2.
    
In the rescue of hydrogen-fueled vehicle accidents, once accidental leakage occurs and hydrogen enters the cabin, the relatively closed environment of the vehicle is prone to hydrogen accumulation. Excessive hydrogen concentration inside the vehicle cabin may cause suffocation death of injured passengers and rescue crews, or explosion risk. Based on hydrogen fuel cell vehicle (HFCV) with hydrogen storage pressure 70 MPa, four different scenarios (i. with opened sunroof, ii. opened door windows, iii. opened sunroof and door windows and iv. opened sunroof, door windows and rear windshield) under the condition of accidental leakage were simulated using computational fluid dynamics (CFD) tools. The hydrogen concentration inside the vehicle and the distribution of flammable area (>4% hydrogen mole fraction) were analyzed, considering the effect of ambient wind. The results show that in the case of convection between interior and exterior of the vehicle via the sunroof, door windows or rear windshield, the distribution of hydrogen inside the vehicle is strongly affected by the ambient wind speed. In the least risk case, ambient wind can reduce the hydrogen mole fraction in the front of the vehicle to less than 4%, however the rear of the vehicle is always within flammable risk.  相似文献   

3.
    
Hydrogen has been the major cause of fire in almost all of the biggest nuclear accidents witnessed by world so far. Many approaches have been investigated and developed worldwide to mitigate the consequences of hydrogen buildup inside the containment of Nuclear Power Plants (NPPs) under severe accident scenarios. One such most promising method is to deploy Passive Catalytic Recombiner Devices (PCRDs). They work on the principle of recombining hydrogen with oxygen from ambient air on catalytic surfaces to form steam and release of the exothermic heat of reaction. The present work describes the development, validation and application of a CFD based detailed 3D model for hydrogen recombination inside PCRD using the governing mass, momentum, energy and species conservation equations from first principle. The model has been integrated into the CFD code FLUIDYN-MP to capture the associated multi-physics phenomena. The integrated tool has been used to assess the most suitable location within a closed geometry for placing the PCRD so as to improve its performance and efficiency. Simulations were performed for different PCRD positions within a closed vessel under dry as well as steam laden conditions. The findings reveal that PCRD location in closed geometry plays important role in its performance. Moreover lower PCRD position helps in more natural convective mixing causing better hydrogen transport towards PCRD inlet and hence more hydrogen consumption.  相似文献   

4.
Blood pumps have been adopted to treat heart failure over the past decades.A novel blood pump adopting the ro-tor with splitter blades and tandem cascade stator was developed recently.A particle image velocimetry (PIV) experiment was carried out to verify the design of the blood pump based on computational fluid dynamics (CFD) and further analyze the flow properties in the rotor and stator.The original sized pump model with an acrylic housing and an experiment loop were constructed to perform the optical measurement.The PIV testing was car-ried out at the rotational speed of 6952±50 r/min with the flow rate of 3.1 l/min and at 8186±50 r/min with 3.5 l/min,respectively.The velocity and the Reynolds shear stress distributions were investigated by PIV and CFD,and the comparisons between them will be helpful for the future blood pump design.  相似文献   

5.
    
Separation of hydrogen gas from the outlet of water-gas shift reactor via palladium membrane was simulated with a two-dimensional computational fluid dynamic model. To study the influence of the geometry of membrane on the separation of hydrogen, four various membrane modules with cylindrical shells and cone tubes were considered. The results showed that the conical membrane module with upper and bottom diameters of 2 mm and 16 mm can potentially have the highest average flux across the other studied cases. To investigate the effect of flow pattern, four various flow patterns were applied to the model and it was found that the counter-current flow pattern has the highest flux across the membrane for the case in which the cross section is reduced along with the length of the membrane. The results also indicated that the change in the cross section of the membrane module can prevent the intensification of the concentration polarization index within the membrane.  相似文献   

6.
It is well known that hydrogen weakens strengths of metals, and this phenomenon is called hydrogen embrittlement. Despite the extensive investigation concerning hydrogen related fractures, the mechanism has not been enough clarified yet. In this study, we applied the molecular dynamics method to the mode I crack growth in α-Fe single crystals with and without hydrogen, and analyzed the hydrogen effects from atomistic viewpoints. We estimated the hydrogen trap energy in the vicinity of an edge dislocation in order to clarify the distribution of hydrogen atoms, using the molecular statics method. We also evaluated the energy barrier for dislocation motion under a low hydrogen concentration. Based on these results, we propose a mechanism for hydrogen embrittlement of α-Fe under monotonic loading.  相似文献   

7.
    
Steam methane reforming furnaces are the most important devices in the hydrogen production industry. The highly endothermic reaction system requires reaction tubes in the furnace to have a large heat transfer area and to be operated under high temperature and pressure conditions. In order to enhance heat transfer efficiency and protect reaction tubes, the controlling and optimization of the furnace structure have increasingly received more and more research attention. As known from the furnace structure, it is essential to couple the exothermic combustion with the endothermic reforming reactions due to the highly interactive nature of the two processes. Thus, in this paper, the combustion process in the furnace was numerically studied by using computational fluid dynamics (CFD) to model the combustion chamber, coupled with methane steam reforming reaction inside the reaction tubes, defined by a plug flow model. A set of combustion models were compared for the furnace chamber and a plug flow reaction model was employed for reforming reaction tubes, and then a heat coupling process was established. The predicted flue gas temperature distribution showed that the heat transfer in the furnace was not uniform, resulting in hot spots and heat losses on the tube wall. Therefore, structure optimization schemes were proposed. Optimization on arrangements of the tubes and the nozzles promoted the uniform distribution of flue-gas temperature and then improved heat transfer efficiency, thereby enhancing performance of the steam reforming process.  相似文献   

8.
    
《能源学会志》2020,93(3):1110-1124
In this study, a novel furnace concept for in-flight particle spheroidization is presented, characterized and evaluated. A natural gas fired burner with a continued staged air principle and internal recirculation (COSTAIR), was used to provide the required temperature for the spheroidization process. Therefore, a numerically inexpensive CFD model for the calculation of combustion and multiphase flow is proposed. Particularly for the calculation of particle trajectories and particle peak temperatures of non-spherical (chiseled and flaky) slag particles, the presented CFD model differs in two modifications from the current state-of-the-art CFD models: first, a numerically efficient combustion model with a detailed chemical reaction mechanism was used in order to calculate the temperature profile of the furnace. While in most current state-of-the-art CFD models the numerically expensive and time consuming eddy dissipation concept (EDC) model or the insufficient eddy dissipation model (EDM) are used. Second, the discrete phase model, which is based on a numerically efficient Euler-Lagrangian approach, is used for multiphase modeling. Non-spherical particles are considered by application of a suitable particle drag model from literature. Although, the assumption of spherical particles is more common in current state-of-the-art CFD models for multiphase modeling. It was concluded that the presented furnace concept is applicable for the semi-industrial scale production of spherical boiler slag particles. The numerical results show that the assumption of non-spherical particles, compared to spherical particles, is more suitable for the calculation of particle trajectories and particle peak temperatures in the presented furnace.  相似文献   

9.
The International Energy Agency's Hydrogen Implementing Agreement (IEA HIA) was established in 1977 to pursue collaborative hydrogen research and development and information exchange among its member countries. Information and knowledge dissemination is a key aspect of the work within IEA HIA tasks, and case studies, technical reports and presentations/publications often result from the collaborative efforts. The work conducted in hydrogen safety under Task 31 and its predecessor, Task 19, can positively impact the objectives of national programs even in cases for which a specific task report is not published. The interactions within Task 31 illustrate how technology information and knowledge exchange among participating hydrogen safety experts serve the objectives intended by the IEA HIA.  相似文献   

10.
This study performs the numerical simulation of hydrogen dispersion in a partially open space with a single roof vent. The effects of various roof vent positions, leak positions, leak flow rates and exhaust flow rates on the forced ventilation of leaking hydrogen, are shown and discussed. Based on the results, a proper roof vent position and the disadvantage of ventilation with constant exhaust flow rates are established. To overcome the disadvantage, a new control strategy to change exhaust flow rates with the roof vent fixed at the proper position is proposed. First a plot is constructed to show acceptable exhaust flow rates to various inflow rates and leak positions. Assuming real-time sensing of hydrogen concentration and height-direction velocity, volume flow rates of leaking hydrogen are then estimated. Based on the estimated leak flow rates and hydrogen sensor information near the roof, control is conducted considering the plot of acceptable exhaust flow rates to various inflow rates and leak positions. The proposed method is validated against various leak positions, leak flow rates and leak modes. This paper proposes an innovative approach to sensing-based risk mitigation control of hydrogen dispersion and accumulation in a partially open space by forced ventilation.  相似文献   

11.
The present work investigates the effect of heat and mass transfer on the combustion process of a hydrogen-fueled spark-ignition engine, using an in-house CFD code. The main scope is to compare the calculated local heat fluxes with the available measured ones, using three heat transfer models of increasing complexity (two existing and one developed by the authors). Moreover, the effect of mass transfer through the crevice regions is also investigated using a phenomenological crevice model. The calculated results (cylinder pressure traces, local heat fluxes and NO exhaust emissions) are compared with the corresponding measured data, at various operating conditions, maintaining constant engine speed and altering the compression ratio and the equivalence ratio. It is revealed, that the proposed heat transfer model is more accurate than the standard wall-function formulation, while with the use of the crevice model a more reliable prediction of engine performance is achieved.  相似文献   

12.
    
We introduced a coupled peridynamic hydrogen diffusion and fracture model to solve the hydrogen embrittlement fracture of low alloy steel AISI 4340. In this model, the influence of temperature on hydrogen diffusion coefficient is considered, and a new peridynamic constitutive analysis method is used to simulate the crack propagation of hydrogen embrittlement. We verified the model in 3D using the experimental test of the hydrogen embrittlement cracking process of AISI 4340 steel in 0.1 N H2SO4 solution from the literature. Considering different ambient temperatures, it is found that the crack propagation is highly similar to the experimental results. Based on the numerical analysis of peridynamics, the model can numerically simulate the hydrogen embrittlement fracture of AISI 4340 steel, and obtain a visual demonstration of the entire process of hydrogen atom diffusion and crack growth.  相似文献   

13.
The key factors for efficient in-flight particle heating in a combusting flow were investigated within this paper for the development of a novel boiler slag bead production furnace. A natural gas fired industrial burner with a thermal input of 1.2?MW was thus evaluated using Computational Fluid Dynamics (CFD). The steady laminar flamelet model (SFM) and a detailed chemical reaction mechanism, considering 25 reversible chemical reactions and 17 species were used to account for the steady-state gas phase combustion. Measurements of gas temperature and flow velocity within the furnace were found to be in good accordance with the numerical results. In the second step, sintered bauxite beads were injected into the furnace as an experimental material and heated up in flight. The particle heating characteristics were investigated using the Discrete Phase Model (DPM). The computational results of the particle laden flow raised the issue that convective heat transfer is a key factor for efficient particle heating. At the burner chamber outlet, the temperature of a particle which had been injected into the burner flame was 178?K higher compared to a particle, which trajectory led through zones with lower gas temperatures.  相似文献   

14.
A numerical model for segmented flow in a microreactor has been developed. The model is based on computational fluid dynamics (CFD) which means that the flow field and mass transfer are described by a set of partial differential equations. A general purpose CFD code was extended in order to predict the internal flow patterns of fluid segments and the transfer of dissolved chemical species within segments and across fluid segment interfaces. The model has been validated by comparing predicted data with experimental microreactor titrations.  相似文献   

15.
Cavity flameholder is known as an efficient technique for providing the ignition zone. In this research, computational fluid dynamic is applied to study the influence of the various shapes of cavity as flameholder on the mixing efficiency inside the scramjet. To evaluate different shapes of cavity flame holder, the Reynolds-averaged Navier–Stokes equations with (SST) turbulence model are solved to reveal the effect of significant parameters. The influence of trapezoidal, circle and rectangular cavity on fuel distribution is expansively analyzed. Moreover, the influence of various Mach numbers (M = 1.2, 2 and 3) on mixing rate and flow feature inside the cavity is examined. The comprehensive parametric studies are also done. Our findings show that the trapezoidal cavity is more efficient than other shapes in the preservation of the ignition zone within the cavity. In addition, the increase of free stream Mach number intensifies the main circulations within cavity and this induces a stable ignition zone within cavity.  相似文献   

16.
Computational Fluid Dynamics (CFD) is employed to investigate the hydrogen jet exiting through different shapes of orifices. The effect of orifice geometry on the structure, development and dispersion of a highly under-expanded hydrogen jet close to the exit is numerically investigated. Various shapes of orifices are evaluated, including holes with constant areas such as elliptical and circular openings, as well as, enlarging circular orifices. A three-dimensional in-house parallel code is exploited to simulate the flow using an unstructured tetrahedral finite volume Euler solver. The numerical simulations indicate that, for a high pressure reservoir hydrogen release, the area of the orifice is the main geometric parameter influencing the centerline pressure at the hydrogen-air interface and the transient peak temperature, while the elliptical or expanding orifices slightly mitigate the auto-ignition risks associated with the accidental release of hydrogen. Therefore, circular openings represent the most conservative geometry for the study of auto-ignition of hydrogen.  相似文献   

17.
    
Fuel for hydrogen fuel cell vehicles comes from hydrogen refueling stations. During the hydrogen filling process, a high-pressure gradient from 35 MPa (hydrogen storage pressure) to 0.16 MPa (fuel cell pressure) is generated. Such a large pressure gradient posed a challenge to the design of the pressure reducing system. Traditional system is difficult to reduce hydrogen pressure from 35 MPa to 0.16 MPa without accompanying large noise and energy consumption. This work is exploring a new concept to combine the multi-stage continuous resistance perforated components and the Tesla valve to design a two-step high pressure reducing system for hydrogen decompression. To validate the superiority of the developed system, a detailed aerodynamic study on the new system is performed, since aerodynamic performance directly affects the operating flexibility and stability. Finally, the optimized co-design of the system is achieved. Results show that the new system is well-designed for hydrogen decompression with the function of control noise and energy consumption. Larger orifice radius (r1/r0) and orifice ratio (k) contribute the better aerodynamic performance. Angle α = 45° is considered the best for better aerodynamic performance. The descending order of the effects on better aerodynamic performance is angle (α), row (m), sleeve stage (N), orifice radius (r1/r0) and width (t1/t0). This study provides basic support for experts to achieve throttling design of related pressure control systems in hydrogen industry.  相似文献   

18.
The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes & Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety.  相似文献   

19.
    
A numerical study of the behaviour of the multiphase flow of an anode-porous transport layer of an aqueous electrolyzer with a proton-exchange membrane (PEM) of an aqueous electrolyzer is presented. A mixture model was used to study the flow behaviour in a circular-shaped anode box to determine the efficient design of a PEM water electrolyzer. As a result of the simulation, it was found that the model pressure drop profiles obtained by computational fluid dynamics (CFD) are in good agreement with the corresponding experimental data. In addition, the performance profile was predicted considering various PEM water electrolyzer cell improvement factors compared to the Bassline model. The results of the behaviour of two-phase flows with different velocity, pressure and volume fraction profiles, as well as with porous regions in the centre, are presented, which showed a key difference in the flow profile for various inlet and outlet flow configurations. In addition, the flow volume fraction behaviour was obtained at higher and lower water and oxygen rates. Three-dimensional (3D) modelling predicted flow characteristics for three different cell configurations. In this article, we also run simulations over a wide range of flow rates. The main results of the numerical study were discussed to shed light on the design of a high-performance PEM water electrolyzer.  相似文献   

20.
Microchannels are believed to open up the prospect of precise control of fluid flow and chemical reactions. The high surface to volume ratio of micro size channels allows efficient mass transfer rates. The capillary effect can be used to pump fluids in microchannels and the flow generated can dissolve chemicals previously deposited on the walls of the channel. The purpose of this work is to analyze the wall mass transfer rates generated by a capillary driven flow in a microchannel. The results have implications in the optimization and design of devices for biological assays. We performed simulations of the capillary-driven flow in two-dimensional rectangular and circular microchannels by solving numerically the governing momentum and mass transfer equations with a second order accuracy finite volume code. The effects of the Reynolds number, of the contact angle and of the channel geometry on the time evolution of the local and averaged wall mass transfer rates are reported and analyzed. The flow field behind the meniscus, viewed from a reference frame moving at the velocity of the meniscus, showed to have two recirculations that enhance the wall mass transfer rates close to the triple point. A correlation between the Sherwood number and the Reynolds number, the contact angle and the time is reported. The correlation can be a useful tool for design purposes of microfluidic devices with capillary driven flows in which a fast heterogeneous reaction occurs on the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号