首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen refueling infrastructures with on-site production from renewable sources are an interesting solution for assuring green hydrogen with zero CO2 emissions. The main problem of these stations development is the hydrogen cost that depends on both the plant size (hydrogen production capacity) and on the renewable source.In this study, a techno-economic assessment of on-site hydrogen refueling stations (HRS), based on grid-connected PV plants integrated with electrolysis units, has been performed. Different plant configurations, in terms of hydrogen production capacity (50 kg/day, 100 kg/day, 200 kg/day) and the electricity mix (different sharing of electricity supply between the grid and the PV plant), have been analyzed in terms of electric energy demands and costs.The study has been performed by considering the Italian scenario in terms of economic streams (i.e. electricity prices) and solar irradiation conditions.The levelized cost of hydrogen (LCOH), that is the more important indicator among the economic evaluation indexes, has been calculated for all configurations by estimating the investment costs, the operational and maintenance costs and the replacement costs.Results highlighted that the investment costs increase proportionally as the electricity mix changes from Full Grid operation (100% Grid) to Low Grid supply (25% Grid) and as the hydrogen production capacity grows, because of the increasing in the sizes of the PV plant and the HRS units. The operational and maintenance costs are the main contributor to the LCOH due to the annual cost of the electricity purchased from the grid.The calculated LCOH values range from 9.29 €/kg (200 kg/day, 50% Grid) to 12.48 €/kg (50 kg/day, 100% Grid).  相似文献   

2.
India is one of the most populous countries in the world, and this has implications for its energy consumption. The country's electricity generation and road transport are mostly dominated by fossil fuels. As such, this study assessed the techno-economics and environmental impact of a solar photovoltaic power plant for both electricity and hydrogen production at five different locations in India (i.e., Chennai, Indore, Kolkata, Ludhiana, and Mumbai). The hydrogen load represents a refueling station for 20 hydrogen fuel cell vehicles with a tank capacity of 5 kg for each location. According to the results, the highest hydrogen production occurred at Kolkata with 82,054 kg/year, followed by Chennai with 79,030 kg/year. Ludhiana, Indore, and Mumbai followed with 78,524 kg/year, 76,935 kg/year and 74,510 kg/year, respectively. The levelized cost of energy (LCOE) for all locations ranges between 0.41 and 0.48 $/kWh. Mumbai recorded the least LCOH of 3.00 $/kg. The total electricity that could be generated from all five cities combined was found to be about 25 GWh per annum, which translates to an avoidable emission of 20,744.07 metric tons of CO2e. Replacing the gasoline that could be used to fuel the vehicles with hydrogen will result in a CO2 reduction potential of 2452.969 tons per annum in India. The findings indicate that the various optimized configurations at the various locations could be economically viable to be developed.  相似文献   

3.
The increasing threat to environmental sustainability as a result of greenhouse gas (GHG) emissions from fossil fuel base power plants has necessitated the need to find sustainable energy sources to meet the world's energy demands. This study focuses on assessing the potential of a hybrid power plant for the production of electricity, hydrogen for the production of fertilizer for agricultural activities, farmland irrigation, environmental impact as well as its employment potential in northern Ghana. The Shannon entropy weight and TOPSIS multi-criteria decision-making approach were adopted to rank and identify the optimal configuration out of five possible options for the study area. Results from the simulation show that the winning system, i.e., Hydro + Battery system would generate a total electricity of 1,095,679 kWh/year. A cost of electricity of 0.06 $/kWh with an operating cost (OC) of $18,318 was recorded for the winning system. The total produced hydrogen by the optimum configuration is 8816 kg/year at a levelized cost of hydrogen (LCOH) of 4.47 $/kg. The quantity of low-carbon fertilizer that can be produced from the produced hydrogen is also assessed. The optimum configuration also recorded an employment potential of 4 persons in 25 years. A total GHG equivalence of 383.49 metric tons of CO2 equivalent indicating the level of emissions that will be avoided should the optimum system be used to meet the demands specified in this study was obtained.  相似文献   

4.
A techno-economic study is performed for a large scale combustion-less hydrogen production process based on Steam Methane Reforming (SMR). Two process versions relying on different renewable heat sources are compared: (1) direct solar heating from a concentrated solar power system, and (2) radiation from resistive electrical heaters (electric SMR). Both processes are developed around an integrated micro-reactor technology, incorporating in a monolithic block most sub-processes needed to perform SMR. A baseline techno-economic scenario with low-cost feedstock and electricity, priced at $4/MMBtu and $0.04/kWh respectively, results in an LCOH of $2.31/kgH2 for solar SMR and $1.59/kgH2 for electric SMR. Results further show that solar SMR is currently more attractive economically than electric SMR coupled with distributed wind power systems, but electric SMR is more favourable in the long term due to the expected future improvements in the LCOE and capacity factor of wind power systems.  相似文献   

5.
In recent years, hydrogen has constituted a clean energy carrier that can be gained by the use of renewable electricity. The most preliminary stage in the process of renewable hydrogen generation is to find the best place for exploiting the most energy. Thus, this study seeks to optimize the process of location selection for the construction of a solar power station. This evaluation is performed on 12 cities of Isfahan in Iran. After ascertaining 11 criteria of key importance, Window Data Envelopment Analysis (WDEA) Method is used to prioritize the cities according to the data for a period of 11 years. Consequently, the most promising site is technically and economically scrutinized as to hydrogen production using solar electricity. Results pertaining to the first part of the study showed that the city of Natanz was efficient over the entire studied period. Considering 4 cases of different performance rates, annual electricity generation using solar panel model X21-345 and hydrogen production using an alkaline electrolyzer were estimated for the city. The estimations indicated that hydrogen production under the worst and the best cases would be 2.22 kg and 5.55 leading to energy efficiency of between 2.5% and 7.1%, respectively. Finally, economic assessment proved promising results in which Levelized Cost of Electricity (LCOE) would be between 0.5317 and 1.6272 $/kWh and Levelized Cost of Hydrogen (LCOH) would vary from 0.7911 to 1.6778 $/kg.  相似文献   

6.
The present paper reports a techno-economic analysis of two solar assisted hydrogen production technologies: a photoelectrochemical (PEC) system and its major competitor, a photovoltaic system connected to a conventional water electrolyzer (PV-E system). A comparison between these two types was performed to identify the more promising technology based on the levelized cost of hydrogen (LCOH). The technical evaluation was carried out by considering proven designs and materials for the PV-E system, and a conceptually design for the PEC system extrapolated to future, commercial scale.The LCOH for the off-grid PV-E system was found to be 6.22 $/kgH2, with a solar to hydrogen efficiency of 10.9%. For the PEC system, with a similar efficiency of 10%, the LCOH was calculated to be much higher, namely 8.43 $/kgH2. A sensitivity analysis reveals a great uncertainty in the LCOH of the prospective PEC system. This implies that much effort would be needed for this technology to become competitive on the market.Therefore we conclude that the potential techno-economic benefits that PEC systems offer over PV-E are uncertain, and even in the best case, limited. While research into photoelectrochemical cells remains of interest, it presents a poor case for dedicated investment in the technology's development and scale-up.  相似文献   

7.
Chemical looping reforming (CLR) is a novel technology that can be used for reforming of cheaply available abundant biofuel like ethanol for the production of hydrogen/syngas for fuel cells. A systematic thermodynamic study for the CLR process using selected oxygen carriers was done to analyze the products and energy requirements of the CLR process in the temperature range of 500–1200 °C at 1 bar pressure for ethanol. The results showed favorable conditions for syngas manufacture from this process. Fe2O3 was found to be the best performing oxygen carrier followed by calcium and sodium sulfates, while Mn oxides were the least preferred oxygen carriers for CLR of ethanol process. The optimum process temperature was found to be 1000 °C. The actual CLR‐ethanol process shows exothermicity against the theoretical endothermic partial oxidation of ethanol. The results obtained in this theoretical study can pave the way for experimental programs for syngas generation for SOFC‐type fuel cells. Similar studies can be undertaken for other fuels for fuel processor development by CLR process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Two newly emerging technologies: (a) plasma gasification and (b) molten carbonate fuel cell (MCFC) are integrated for hydrogen and power production for various system configurations. Due to the emission concerns of fossil fuels, wastes such as refused derived fuel (RDF) is chosen as feedstock. The simulation of the power plants is performed using Aspen plus and consequently, 4-E (energy, exergy, economic and environmental) analyses are executed. The highest energy and exergy efficiencies attained are 54.12% and 52.02% for the system Syngas:CH4 [PSA: MCFC], respectively. Moreover, the cost of electricity considering all the configurations is ranged between 77.48 and 107.93 $/MWh while the LCOH is between 1.01 and 3.94 $/kg. Likewise, introduction of MCFC for 0:100 [PSA: MCFC] case reduced the annual CO2 emissions ∼5 times than of 100:0. Therefore, the 4-E analyses reported that integrated plasma gasification with MCFC introducing waste as feed could possibly favour H2 and power co-generation and a cleaner environment.  相似文献   

9.
This article broadly reviews the state-of-the-art technologies for hydrogen production routes, and methods of renewable integration. It outlines the main techno-economic enabler factors for Australia to transform and lead the regional energy market. Two main categories for competitive and commercial-scale hydrogen production routes in Australia are identified: 1) electrolysis powered by renewable, and 2) fossil fuel cracking via steam methane reforming (SMR) or coal gasification which must be coupled with carbon capture and sequestration (CCS). It is reported that Australia is able to competitively lower the levelized cost of hydrogen (LCOH) to a record $(1.88–2.30)/kgH2 for SMR technologies, and $(2.02–2.47)/kgH2 for black-coal gasification technologies. Comparatively, the LCOH via electrolysis technologies is in the range of $(4.78–5.84)/kgH2 for the alkaline electrolysis (AE) and $(6.08–7.43)/kgH2 for the proton exchange membrane (PEM) counterparts. Nevertheless, hydrogen production must be linked to the right infrastructure in transport-storage-conversion to demonstrate appealing business models.  相似文献   

10.
Hydrogen is one of the energy carriers that can be produced using different techniques. Combining multiple energy sources can enhance hydrogen production and meet other electrical demands. The hybrid arrangement allows the produced hydrogen to be stored and used when the electrical energy sources are not adequate. In this study, utilizing the meteorological data was investigated using HOMER (Hybrid Optimization of Multiple Energy Resources) software for the optimal solution. The results demonstrated that the “best-optimized system has 270 kW of photovoltaic (PV), 1 unit of 300 kW of wind turbine (WT), 500 kW of electrolyzer, 100 kg/L of the hydrogen tank, 70 units of 1 kWh lithium-ion battery, and 472 kW of the converter. The selected hybrid energy system has the lowest Levelized cost of energy (LCOE), Levelized cost of hydrogen (LCOH), and net present cost (NPC) of $/kg 0.6208, $/kg 9.34, and $ 484,360.00 respectively which judged the system to be the best choice for the proposed hydrogen project in AI-Kharj. This investigation will help stakeholders and policymakers optimize hybrid energy systems that economically meet the hydrogen production and refueling station demands of the AI-Kharj community.  相似文献   

11.
Hydrogen is produced via steam methane reforming (SMR) for bitumen upgrading which results in significant greenhouse gas (GHG) emissions. Wind energy based hydrogen can reduce the GHG footprint of the bitumen upgrading industry. This paper is aimed at developing a detailed data-intensive techno-economic model for assessment of hydrogen production from wind energy via the electrolysis of water. The proposed wind/hydrogen plant is based on an expansion of an existing wind farm with unit wind turbine size of 1.8 MW and with a dual functionality of hydrogen production and electricity generation. An electrolyser size of 240 kW (50 Nm3 H2/h) and 360 kW (90 Nm3 H2/h) proved to be the optimal sizes for constant and variable flow rate electrolysers, respectively. The electrolyser sizes aforementioned yielded a minimum hydrogen production price at base case conditions of $10.15/kg H2 and $7.55/kg H2. The inclusion of a Feed-in-Tariff (FIT) of $0.13/kWh renders the production price of hydrogen equal to SMR i.e. $0.96/kg H2, with an internal rate of return (IRR) of 24%. The minimum hydrogen delivery cost was $4.96/kg H2 at base case conditions. The life cycle CO2 emissions is 6.35 kg CO2/kg H2 including hydrogen delivery to the upgrader via compressed gas trucks.  相似文献   

12.
The two-step thermochemical metal oxide water-splitting cycle with the state-of-the-art material ceria inevitably produces unutilized high-quality heat, in addition to hydrogen (H2). This study explores whether the ceria cycle can be of greater value by using the excess heat for co-production of electricity. Specially, this technoeconomic study estimates the H2 production cost in a hybrid ceria cycle, in which excess heat produces electricity in an organic Rankine cycle, to increase revenue and decrease H2 cost. The estimated H2 cost from such a co-generation multi-tower plant is still relatively high at $4.55/kg, with an average H2 production of 1431 kg/day per 27.74 MWth tower. Sensitivity analyses show opportunities and challenges to achieving $2/kg H2 through improvements such as increased solar field efficiency, increased revenue from electricity sales, and a decreased capital recovery factor from baseline assumptions. While co-production improves overall system efficiency and economics, achieving $2/kg H2 remains challenging with ceria as the active material and likely will require a new material.  相似文献   

13.
The interest in non-electric applications of nuclear energy is rising ranging from hydrogen production, district heating, seawater desalination, and various industrial applications to provide long-term answers for a variety of energy issues that both present and future generations will confront. Hydrogen is a dynamic fuel that can be used across all industrial sectors to lower carbon intensity. This study, therefore, aims at estimating the cost of nuclear hydrogen production from some light water reactors using International Atomic Energy Agency (IAEA) Hydrogen Calculator (HydCalc) program and comparing the result with similar existing studies conducted by other scholars using the Hydrogen Economic Evaluation Program (HEEP) program. The study employs six existing Light Water Reactors (LWRs) comprised of Korea Advanced Power Reactor 1400 MW electricity (APR1400), Russian VVER-1200, Davis-Besse Nuclear Power Plant in Ohio, Prairie Island NPP in Minnesota, Nine Mile Point NPP in New York, and Arizona Public Service's Palo Verde NPP to evaluate the Levelized cost of nuclear hydrogen production. Estimation of hydrogen demand was performed without carbon dioxide (CO2) tax since nuclear power has zero CO2 emission. The Levelized costs obtained using IAEA HydCalc and HEEP Programme were compared as follows; APR1400 cost are 2.6$/kg and 3.18$/kg, VVER1200 cost are 3.8$/kg and 3.44$/kg; Exelon cost are 1.7$/kg and 4.85$/kg; Davis Besse cost are 3.9$/kg and 3.09$/kg; Parlo Verde cost are 3.5$/kg and 4.77$/kg; Xcel Energy cost are 3.63$/kg and 0.69$/kg. The cost of hydrogen production using HEEP for Xcel Energy's Prairie Island NPP is 0.69 $/kg. This is because the reactor utilizes High Temperature Steam Electrolysis, method of hydrogen production, while the other methods employs Low Temperature Electrolysis. The results shows that the final price of the hydrogen for each reactor technology depends not only on the production method but also on the cost of the nuclear power plant and the production rate of the hydrogen plant.  相似文献   

14.
It is acknowledged that Hydrogen has a decisive role to play in insuring a reliable and efficient penetration of renewable electricity in the energy mix. Nonetheless, building a sustainable Hydrogen Economy is faced with numerous challenges across the value chain. Namely, large-scale production and storage are still open issues that need to be addressed. A promising solution is to store renewable H2 in the form of green ammonia often referred to as Power-to-Ammonia. Thus unlocking all available infrastructure for ammonia to effectively store and export hydrogen in bulk. In this value chain, the missing link is ammonia cracking to recover back hydrogen at high purities. The present work explores a technical solution to recover hydrogen from ammonia at large-scale. Through an exhaustive technoeconomic analysis, we have demonstrated the feasibility of large-scale production of pure H2 from ammonia. The designed Ammonia-to-H2 plant operates at a thermal efficiency of 68.5% to produce 200 MTPD of pure hydrogen at 250 bar. Furthermore, this study has established a final estimation of the Levelized Cost of Hydrogen (LCOH) from green ammonia. It was revealed that LCOH is mostly dependent on green ammonia cost, which in turn varies with renewable electricity cost.  相似文献   

15.
Offshore wind is currently the most rapidly growing renewable energy source on a global scale. The increasing deployment and high economic potential of offshore wind have prompted considerable interest in its use for hydrogen production. In this context, this study develops a Monte Carlo-based framework for assessing the competitiveness of offshore wind-to-hydrogen production. The framework is designed to evaluate the location-based variability of the levelised cost of hydrogen (LCOH) and explore the uncertainty that exists in the long-term planning of hydrogen production installations. The case study of Poland is presented to demonstrate the application of the framework. This work provides a detailed analysis of the LCOH considering the geographical coordinates of 23 planned offshore wind farms in the Baltic Sea. Moreover, it presents a comparative analysis of hydrogen production costs from offshore and onshore wind parks in 2030 and 2050. The results show that hydrogen from offshore wind could range between €3.60 to €3.71/kg H2 in 2030, whereas in 2050, it may range from €2.05 to €2.15/kg H2.  相似文献   

16.
Chemical looping reforming (CLR) is an efficient technology that transforms hydrocarbons into hydrogen (H2) and carbon dioxide (CO2) with the use of an oxygen carrier. The three-reactor CLR (TRCLR) uses natural gas as fuel similar to a conventional steam-methane reforming (SMR) process. In the current study, two of the most suitable oxygen carriers with base metals iron (Fe) and tungsten (W) are investigated. The model of the CLR unit integrated with a combined cycle power plant is developed using Aspen Plus. The results show that the W-based TRCLR plants are 4 %-points more efficient in terms of H2 production efficiency. In terms of electrical efficiency, the Fe-based TRCLR plant produces excess power at an efficiency of 1.6% whereas the W-based plant requires 3% of extra power from the grid. As a result, the Fe-based plant is 2.6 %-points more efficient than the W-based plant in terms of global efficiency. The costs of H2 production for the Fe and W-based plants are estimated to be $1.66/kg and $16.92/kg, respectively. Compared to the SMR process, the cost of H2 production from the Fe-based TRCLR plant is about 31% lower.  相似文献   

17.
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production, transportation, and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm, sizing of the electrolyser, PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced, transported, and dispensed using this system can meet the entire current bus fuel demand for all the studied cities, at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH, the future operational cost of FCEBs in Belfast, Cork and Dublin can be competitive with public buses fuelled by diesel, especially under carbon taxes more reflective of the environmental impact of fossil fuels.  相似文献   

18.
This paper presents the economic assessment of novel refueling stations, in which through advanced and high efficiency technologies, the polygeneration of more energy services like hydrogen, electricity and heat is carried out on-site.The architecture of these polygeneration plants is realized with a modular structure, organized in more sections.The primary energy source is ammonia that represents an interesting fuel for producing more energy streams. The ammonia feeds directly the SOFC that is able to co-generate simultaneously electricity and hydrogen by coupling a high efficiency energy system with hydrogen chemical storage.Two system configurations have been proposed considering different design concepts: in the first case (Concept_1) the plant is sized for producing 100 kg/day of hydrogen and the power section is sized also for self-sustaining the plant electric power consumption, while in the second one (Concept_2) the plant is sized for producing 100 kg/day of hydrogen and the power section is sized for self-sustaining the plant electric power consumption and for generating 50 kW for the DC fast charging.The economic analysis has been carried out in the current and target scenarios, by evaluating, the levelized cost of hydrogen (LCOH), the levelized cost of electricity (LCOE), the Profitability Index (PI), Internal rate of Return (IRR) and the Discounted Payback Period (DPP).Results have highlighted that the values of the LCOH, for the proposed configurations and economic scenarios, are in the range 6–10 €/kg and the values of the LCOE range from 0.447 €/kWh to 0.242 €/kWh.In terms of PI and IRR, the best performance is achieved in the Concept_1 for the current scenario (1.89 and 8.0%, respectively). On the contrary, in the target scenario, thanks to a drastic costs reduction the co-production of hydrogen and electricity as useful outputs, becomes the best choice from all economic indexes and parameters considered.  相似文献   

19.
The study aims to optimize the geothermal and solar-assisted sustainable energy and hydrogen production system by considering the genetic algorithm. The study will be useful by integrating hydrogen as an energy storage unit to bring sustainability to smart grid systems. Using the Artificial Neural Network (ANN) based Genetic Algorithm (GA) optimization technique in the study will ensure that the system is constantly studied in the most suitable under different climatic and operating conditions, including unit product cost and the plant's power output. The water temperature of the Afyon Geothermal Power Plant varies between 70 and 130 °C, and its mass flow rate varies between 70 and 150 kg/s. In addition, the solar radiation varies between 300 and 1000 W/m2 for different periods. The net power generated from the region's geothermal and solar energy-supported system is calculated as 2900 kW. If all of this produced power is used for hydrogen production in the electrolysis unit, 0.0185 kg/s hydrogen can be produced. The results indicated that the overall energy and exergy efficiencies of the integrated system are 4.97% and 16.0%, respectively. The cost of electricity generated in the combined geothermal and solar power plant is 0.027 $/kWh if the electricity is directly supplied to the grid and used. The optimized cost of hydrogen produced using the electricity produced in geothermal and solar power plants in the electrolysis unit is calculated as 1.576 $/kg H2. The optimized unit cost of electricity produced due to hydrogen in the fuel cell is calculated as 0.091 $/kWh.  相似文献   

20.
H2 production from solar electricity in the region of the Atacama Desert – Chile – has been identified as strategical for global hydrogen exportation. In this study the full supply chain of solar hydrogen has been investigated for 2018 and projected to scenarios for 2025-2030. Multi-year hourly electrical profiles data have been used from real operating PV plants and simulated Concentrated Solar Power “CSP” plants with Thermal Energy Storage “TES” as well as commercial electricity Power Purchase Agreement “PPA” prices reported in the Chilean electricity market were considered. The Levelized Cost of Hydrogen “LCOH” of each production pathway is calculated by a case-sensitive techno-economic MATLAB/Simulink model for utility scale (multi-MW) alkaline and PEM electrolyser technologies. Successively, different distribution, storage and transportation configurations are evaluated based on the 2025 Japanese case study according to the declared H2 demand. Transport in the form of liquefied hydrogen (LH2) and via ammonia (NH3) carrier is compared from the port of Antofagasta, CL to the port of Osaka, JP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号