首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
废气再循环和进气加热是实现汽油机HCCI燃烧的两种不同方式,其对HCCI燃烧性能的影响也不同,为此,在同一台汽油机上分别采用废气再循环和进气加热实现HCCI燃烧,并分析了其在HCCI燃烧性能上存在差异的机理.试验结果表明,相对于进气加热,废气再循环的工质比热容高,但由于稀释比较小,使得其工质总热容反而低,从而缸内燃烧温度高.废气再循环HCCI燃烧的未燃HC排放比进气加热的排放值低41%~59%;NOx排放是后者的2~20倍;而CO排放与负荷有关;其燃烧效率比进气加热HCCI的值高0.8%~14%.然而,由于进气加热的PMEP低,缸内工质比热比大,传热损失小,最终使得进气加热HCCI燃烧的ISFC比废气再循环HCCI燃烧的值低6.6%~16.4%.  相似文献   

2.
A multidimensional computational fluid dynamics (CFD) simulation of a constructed syngas chemical kinetic mechanism was performed to evaluate the combustion of syngas in a supercharged dual-fuel engine for various syngas initial compositions under lean conditions. The modelled results were validated by comparing predictions against corresponding experimental data for a supercharged dual-fuel engine. The predicted and measured in-cylinder pressure, temperature, and rate of heat release (ROHR) data were in good agreement. The effect of the hydrogen peroxide chain-propagation reaction on the progress of combustion under supercharged conditions was examined for different types of syngas using various initial H2 concentrations. The effect of the main syngas kinetic mechanism reactions on the combustion progress was analysed in terms of their contribution to the total heat of the reaction. The best results compared with experimental data were obtained in the range of equivalence ratios below about 0.8 for all types of syngas considered in this paper. As the equivalence ratio increased above 0.8, the results deviated from the experiment data. The spatial distribution of the in-cylinder temperature and OH within this equivalence-ratio range showed the completeness of the combustion. The present CFD model captured the overall combustion process well and could be further developed into a useful tool for syngas-engine combustion simulations.  相似文献   

3.
The combustion, performance, and emissions of syngas (H2/CO) in a four-stroke, direct-injection, spark-ignition engine were experimentally investigated. The engine was operated at various speeds, ranging from 1500 to 2400 rev/min, with the throttle being held in the wide-open position. The start of fuel injection was fixed at 180° before the top dead center, and the ignition advance was set at the maximal brake torque. The air/fuel ratio was varied from the technically possible lowest excess air ratio (λ) to lean operation limits. The results indicated that a wider air/fuel operating ratio is possible with syngas with a very low coefficient of variation. The syngas produced a higher in-cylinder peak pressure and heat-release rate peak and faster combustion than for CNG. However, CNG produced a higher brake thermal efficiency (BTE) and lower brake specific fuel consumption (BSFC). The BTE and BSFC of the syngas were on par to those of CNG at higher speeds. For the syngas, the total hydrocarbon emission was negligible at all load conditions, and the carbon monoxide emission was negligible at higher loads and increased under lower load conditions. However, the emission of nitrogen oxides was higher at higher loads with syngas.  相似文献   

4.
HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.  相似文献   

5.
以缸内喷射CO2为控制手段,实现了对柴油均质压燃(HCCI)燃烧的闭环控制。开发了基于循环的燃烧相位闭环控制系统,试验研究了系统的开环和闭环性能。基于循环的燃烧闭环控制系统包括气缸压力采集、燃烧特征参数计算和控制参数更新等模块。经过对最高燃烧压力对应的曲轴转角(φpmax)、最大压力升高率对应的曲轴转角(φλmax)和燃烧分数为50%时对应的曲轴转角(CA50)等参数的比较,决定选择CA50作为反馈参数。试验结果表明:用CO2喷射作为执行器能实现燃烧相位的快速控制。系统能很好地跟踪CA50阶跃输入,并且在转速和负荷干扰存在的情况下实现对CA50的控制。  相似文献   

6.
The main challenge on the fueling of pure hydrogen in the automotive vehicles is the limitation in the hydrogen separation from the product of steam reforming and gasification plants and the storage issues. On the other hand, hydrogen fueling in automotive engines has resulted in uncontrolled combustion. These are some of the factors which motivated for the fueling of raw syngas instead of further chemical or physical processes. However, fueling of syngas alone in the combustion chamber has resulted in decreased power output and increased in brake specific fuel consumption. Methane augmented hydrogen rich syngas was investigated experimentally to observe the behavior of the combustion with the variation of the fuel-air mixture and engine speed of a direct-injection spark-ignition (DI SI) engine. The molar ratio of the high hydrogen syngas is 50% H2 and 50% CO composition. The amount of methane used for augmentation was 20% (V/V). The compression ratio of 14:1 gas engine operating at full throttle position (the throttle is fully opened) with the start of the injection selected to simulate the partial DI (180° before top dead center (BTDC)). The relative air-fuel ratio (λ) was set at lean mixture condition and the engine speed ranging from 1500 to 2400 revolutions per minute (rpm) with an interval of 300 rpm. The result indicated that coefficient of variation of the indicate mean effective pressure (COV of IMEP) was observed to increase with an increase with λ in all speeds. The durations of the flame development and rapid burning stages of the combustion has increased with an increase in λ. Besides, all the combustion durations are shown to be more sensitive to λ at the lowest speed as compared to the two engine speeds.  相似文献   

7.
为了研究HCCI发动机着火控制时刻影响因素,建立了模拟HCCI发动机燃烧的计算模型,以甲烷/丙烷混合物和正庚烷/异辛烷混合物作为燃料,考察了十六烷值、辛烷值、压缩比、燃空当量比、进气温度和压力等因素对HCCI发动机着火时刻的影响.计算结果表明:随着燃料十六烷值的减小或辛烷值的增加,相同条件下燃料的着火延迟期增加;压缩比、燃空当量比和进气温度的变化会引起燃料着火时刻的显著变化;进气压力的变化对燃料着火延迟期的影响较小;气体十六烷值越低,辛烷值越大,着火延迟期受上述参数变化影响越大.研究结果为HCCI发动机的优化设计和燃烧控制提供指导依据.  相似文献   

8.
A multi-dimensional Computational Fluid Dynamics (CFD) model is adopted to investigate the Dimethyl Ether (DME) Homogeneous Charge Compression Ignition (HCCI) combustion and emissions processes. A reduced chemical mechanism is coupled with a CFD code in the multi-dimensional CFD model. The pressure profiles predicted by the multi-dimensional CFD model are more accurate than the single-zone model, because the wall heat transfer and in-cylinder turbulence flow are considered. During the combustion process the in-cylinder temperature distribution undergoes a process from inhomogeneity to homogeneity. Both low and high temperature reactions don't occur simultaneously throughout the cylinder. The low temperature reactions are initiated near the piston surface and squish region, and the high temperature reactions are initiated in the combustion chamber core zone and squish region. Emission analysis indicates that unburned fuel and CH2O account for the majority of unburned hydrocarbon (HC). The unburned fuel, CH2O and CO emission mainly resides in the bottom, middle and upper part of the piston-ring crevice region, respectively. With the decrease of DME equivalence ratio, unburned fuel and CO increases. However, when the DME equivalence ratio is too small, CO emission decreases.  相似文献   

9.
Fuel stratification has the potential to extend the high load limits of homogeneous charge compression ignition (HCCI) combustion by improving the control over the combustion phase as well as reducing the maximum rate of pressure rise. In this work, experiments were carried out on a single-cylinder engine equipped with a dual-fuel-injection system – a port injector for preparing a homogeneous charge and a direct in-cylinder injector for creating the desired fuel stratification. The homogeneous charge was prepared using gasoline fuel while the fuel stratification was created with the in-cylinder injection of either gasoline or methanol during the compression stroke. The test results indicate that high load extension using gasoline for fuel stratification is limited by the trade-off between CO and NOx emissions. Weak gasoline stratification leads to an advanced combustion phase and an increase in NOx emission, while increasing the stratification with a higher quantity of gasoline direct injection, results in a significant deterioration in both the combustion efficiency and the CO emission. Engine tests using methanol for the stratification retarded the ignition timing and prolonged the combustion duration, resulting in a substantial reduction in the maximum rate of pressure rise and the maximum cylinder pressure – a prerequisite for HCCI high load extension. Further tests were then conducted with methanol stratification to extend the HCCI load limit and to optimize the stratified methanol-to-gasoline fuel ratio. Compared to gasoline HCCI, a 50% increase in the maximum IMEP attained was achieved with an acceptable maximum pressure rise rate of 0.5 MPa/°CA while maintaining a high thermal efficiency.  相似文献   

10.
The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120–150 °C) and at different air–fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air–fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NOx emissions are lower than 10 ppm however HC and CO emissions are higher.  相似文献   

11.
Varying proportions of hydrogen and carbon monoxide (synthesis gas) have been investigated as a spark ignition (SI) engine fuel in this paper. It is important to understand how various synthesis gas compositions effect important SI combustion fundamentals, such as knock and burn duration, because in synthesis gas production applications, the compositions can vary significantly depending on the feedstock and production method.A single cylinder cooperative fuels research (CFR) engine was used to investigate the knock and combustion characteristics of three blends of synthesis gas (H2/CO ratio); 1) 100/0, 2) 75/25, and 3) 50/50, by volume. These blends were tested at three compression ratios (6:1, 8:1, and 10:1), and three equivalence ratios (0.6, 0.7, and 0.8).It was revealed that the knock limited compression ratio (KLCR) of a H2/CO mixture increases with increasing CO fraction, for a given spark timing. For a given equivalence ratio and spark timing, a 50%/50% H2/CO mixture produced a KLCR of 8:1 compared to a 100% H2 condition, which produced a KLCR of 6:1. The burn duration and ignition lag is also increased with increasing CO fraction. The results from this work are important for those considering using synthesis gas as a fuel in SI engines. It reveals that although CO is a slow burning fuel, higher CO fractions in synthesis gas can be beneficial, because of its increased resistance to knock, which gives it the potential of producing higher indicated efficiencies through the utilization of an engine with a higher compression ratio.  相似文献   

12.
采用数值模拟方法研究了第一参比燃料(PRF50)的低温重整过程及其产物对压燃式发动机燃烧和排放特性的影响。研究结果表明,PRF50燃料的低温重整区域随当量比的增加而增大,初始温度和压力的选择范围变化有限,并且PRF50燃料发生低温反应的触发界线开始向较高的初始进气温度方向移动;初始进气温度和当量比对重整过程的影响要大于初始压力的影响;PRF50燃料的低温重整产物均可使PRF50燃料均质充量压燃的燃烧相位提前,且重整产物的加入改善了发动机有害排放中一氧化碳、未燃碳氢和氮氧化物的排放,指示热效率也可提高约3.0%。  相似文献   

13.
在一台单缸HCCI发动机上研究了进气道喷射汽油缸内喷射甲醇形成汽油甲醇燃油分层的HCCI燃烧排放特性,探索了其拓展HCCI燃烧高负荷的潜力。试验结果表明:在汽油HCCI燃烧中喷射甲醇能够有效降低缸内混合气的温度,推迟着火时刻,延长燃烧持续期,从而降低压力升高率和缸内最高燃烧压力,有利于拓展HCCI燃烧高负荷。一定的HCCI负荷工况存在最佳的汽油甲醇比例,且汽油甲醇最佳比例随着负荷的增加不断减小。在最大压力升高率0.5MPa/°CA和较高的指示效率的限制下,自然吸气条件下采用汽油和甲醇燃油分层的HCCI燃烧最高负荷比汽油HCCI燃烧提高了近50%,达到0.62MPa。  相似文献   

14.
使用快速压缩装置进行了直喷式天然气发动机排放特性的研究。测量了三种不同方式下的排放,并与均相混合气燃烧情况进行了对比。实验结果表明,在宽广的当量比范围内,天然气直喷方式的燃烧效率高于0.95。由于混合气的分层燃烧,天然气喷射方式在宽广的当量比范围内保持较低的HC排放量,同等功率下的低CO2排放量,低NOx排放量,其NOx排放在理论当量比处的降低更为明显。直喷天然气发动机既具备柴油机发动机效率高的特点,又具备预混燃烧发动机排放低的特点。  相似文献   

15.
二甲醚均质充量压燃发动机排放特性的试验研究   总被引:6,自引:1,他引:6  
试验研究了压缩比为10.7的二甲醚均质充量压缩点燃燃烧发动机的排放特性。试验结果表明,采用DME HCCI燃烧方式可以有效控制发动机的氮氧化合物排放,使其接近于零,实现无烟燃烧。在一定的负荷范围内,发动机的碳氢和一氧化碳排放与柴油机相当;低负荷时混合气过稀,则碳氢和一氧化碳排放偏高,而高负荷混合气过浓时,又有可能导致敲缸。发动机稳定运转的条件是一定的空燃比必须对应一定的发动机转速和负荷。  相似文献   

16.
The control of ignition timing in the homogeneous charge compression ignition (HCCI) of n-heptane by port injection of reaction inhibitors was studied in a single-cylinder engine. Four suppression additives, methanol, ethanol, isopropanol, and methyl tert-butyl ether (MTBE), were used in the experiments. The effectiveness of inhibition of HCCI combustion with various additives was compared under the same equivalence ratio of total fuel and partial equivalence ratio of n-heptane. The experimental results show that the suppression effectiveness increases in the order MTBE < isopropanol ? ethanol < methanol. But ethanol is the best additive when the operating ranges, indicated thermal efficiency, and emissions are considered. For ethanol/n-heptane HCCI combustion, partial combustion may be observed when the mole ratio of ethanol to that of total fuel is larger than 0.20; misfires occur when the mole ratio of ethanol to that of total fuel larger than 0.25. Moreover, CO emissions strongly depend on the maximum combustion temperature, while HC emissions are mainly dominated by the mole ratio of ethanol to that of total fuel. To obtain chemical mechanistic informations relevant to the ignition behavior, detailed chemical kinetic analysis was conducted. The simulated results also confirmed the retarding of the ignition timing by ethanol addition. In addition, it can be found from the simulation that HCHO, CO, and C2H5OH could not be oxidized completely and are maintained at high levels if the partial combustion or misfire occurs (for example, for leaner fuel/air mixture).  相似文献   

17.
The present study is an attempt to investigate a syngas-diesel dual fueled diesel engine operation under varying load conditions from the second law point of view. The fuel type in dual fuel operation is achieved by varying the volumetric fractions of hydrogen (H2) and carbon monoxide (CO) content in syngas. It is revealed that increasing the hydrogen quantity of syngas increases the cumulative work availability and reduces the destroyed availability. This enhancement is due to a better combustion process and increased work output when a high amount of H2 quantity is employed. At lower loads, the in-cylinder combustion temperatures are reduced in case of the dual fuel combustion. Hence, the destruction availability is increased due to poor combustion and reduced heat transfer availability losses. When the engine is operated beyond 40% load, the destroyed availability reduced due to higher combustion temperature and pressure. The increase in the both exhaust gas and cooling water availabilities are reflected in an increase in second law efficiency with increasing load. The dual fuel cumulative work availability is increased at higher loads and thus, the exergy efficiency is increased.  相似文献   

18.
《Energy》2005,30(10):1803-1816
Seven common methods based on in-cylinder data, usually applied to determine the combustion parameters (ignition delay and combustion duration), are compared using in-cylinder data provided from a natural gas spark ignition engine operating under lean conditions. The influence of three engine operating parameters: spark advance, throttle opening and fuel/air equivalence ratio, on combustion parameters are tested using every method and the results are compared. The application of these methods on average and individual cycles is also performed. The advantages and disadvantages of these methods are presented and discussed. Some methods can be used only for the ignition delay determination. A comparison with a motor-cycle, so a specific experimental device, is necessary for three methods. Others are very sensitive to noise, or can be used only in some restricted area of engine operating conditions. One method needs calculations based on several experimental assumptions.  相似文献   

19.
辛烷值对均质压燃发动机燃烧特性和性能的影响   总被引:9,自引:0,他引:9  
通过不同比例的正庚烷和异辛烷混合得到不同辛烷值的混合燃料,在一台单缸直喷式柴油机上研究燃料辛烷值对均质压燃发动机燃烧特性、性能和排放特性的影响.研究结果表明,燃料辛烷值增加,着火始点推迟,燃烧反应速率降低,缸内爆发压力降低.燃料辛烷值增高,均质压燃向大负荷工况拓宽,燃料辛烷值较高时,存在极限转速,辛烷值增加,极限转速降低.对于每一工况,存在一个最佳经济性的燃料辛烷值,负荷增大,最佳辛烷值增高;随着燃料辛烷值增高,发动机NO、HC和CO排放增加,尤其是HC排放增加更为明显.对于均质压燃发动机,低负荷工况适合燃用低辛烷值燃料,高负荷工况适合燃用高辛烷值燃料。  相似文献   

20.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号