共查询到20条相似文献,搜索用时 15 毫秒
1.
Roland Marschall Chalida Klaysom Aniruddh Mukherji Michael Wark Gao Qing Lu Lianzhou Wang 《International Journal of Hydrogen Energy》2012
Photocatalytic hydrogen production under sunlight was demonstrated using a two-compartment cell without any electrical or chemical bias. New composite polymer membranes act as compartment separator as well as support for coated electrodes and photocatalyst. Commercial P25 was used as model photocatalyst and was spin-coated on different types of membranes. With these high amounts of hydrogen were produced from pure water in a separated half-cell. Higher proton concentrations in low concentrated hydrochloric acid enhance the photocatalytic hydrogen generation. 相似文献
2.
《International Journal of Hydrogen Energy》2020,45(51):27510-27526
A commercial perfluorinated sulfonic acid (PFSA) membrane, Nafion, shows outstanding conductivity under conditions of a fully humidified surrounding. Nevertheless, the use of Nafion membranes that operate only at low temperature (<100 °C) can lead to some disadvantages in PEMFC systems, such as a low impurity tolerance and slow kinetics. To overcome the above problems, this study introduces a highly durable composite membrane with an inorganic filler for a high-temperature proton exchange membrane fuel cell (HT-PEMFC) applications under anhydrous conditions. In this work, polybenzimidazole (PBI) is used as a polymer electrolyte membrane with the addition of a sulfonated graphene oxide (SGO) inorganic filler. The amount of SGO filler was varied (0.5–6 wt.%) to study its influence on proton conductivity at elevated temperature, mechanical stability as well as phosphoric acid doping level. In particular, PBI-SGO composite membranes exhibited higher the level of acid dopant and proton conductivities than those of the pure PBI membranes. The PBI-SGO 2 wt.% composite membrane displayed the highest proton conductivity, with a value of 9.142 mS cm−1 at 25 °C, and it increased to 29.30 mS cm−1 at 150 °C. The PBI-SGO 2 wt.% also displayed the maximum values in the acid doping level (11.63 mol of PA/PBI repeat unit) and mechanical stability (48.86 MPa) analyses. In the HT-PEMFC test, compared with a pristine PBI membrane, the maximum power density was increased by 40% with the use of a PBI composite membrane with 2 wt.% SGO. These results show that the PBI-SGO membrane has a great potential to be applied as an alternative membrane in HT-PEMFC applications, offering the possibility of improving impurity tolerance and kinetic reactions. 相似文献
3.
《International Journal of Hydrogen Energy》2022,47(97):41347-41358
A series of proton exchange electrolytes were synthesized by blending polystyrene sulfonic acid (PSSA) functionalized ZWP ion exchanger and sulfonated poly(vinylidene fluoride) (SPVDF) as base by using solution casting method. The poly(vinylidene fluoride) was sulfonated by employing a direct sulfonation technique demonstrated in the literature. Surface modification of the ZWP was done to obtain the PSSA-ZWP ion exchanger. The membranes were synthesized by using ZWP and PSSA-ZWP as ion exchangers in the SPVDF polymer matrix. The physicochemical characterization of the membranes was performed by using FT-IR and XRD. The scanning electron microscope (SEM) was used to investigate the surface morphology of the fabricated membranes for any possible defects. Important membrane parameters, such as water uptake (up to 26%), methanol uptake (up to 22%), chemical stability (7.4%) and mechanical stability (tensile strength of up to 44 MPa), were measured and are reported. The ion exchange capacity (max 0.62 meq g?1) and electrochemical characterization of the membranes was conducted and parameters such as transport number (max 0.84) indicating good ion selectivity of the membranes and proton conductivity (max 3.89 mS/cm) were also determined. The single cell DMFC performance of the SPVDF-ZWP-PSSA membrane was evaluated at three different operating temperatures of 30 °C, 60 °C and 90 °C, out of which the synthesized membrane performed best at 60 °C with maximum current density and power density of 49.8 mAcm?2 and 20.1 mWcm?2 respectively. 相似文献
4.
Sulphonated-PEEK polymers with two different sulphonation degrees (DS) were obtained by varying the sulphonation parameters. Ionomeric membranes were prepared as a reference. Composite membranes were obtained by mixing different percentage of 3-aminopropyl functionalised silica to the polymers dissolved in DMAc. The resulting membranes were characterised in terms of water uptake, IEC and proton conductivity in different conditions of temperature and relative humidity. 相似文献
5.
Miaomiao HanGang Zhang Mingyu LiShuang Wang Zhongguo LiuHongtao Li Yang ZhangDan Xu Jing WangJing Ni Hui Na 《Journal of power sources》2011,196(23):9916-9923
A diamine-terminated polybenzimidazole oligomer (o-PBI) has been synthesized for introducing the benzimidazole groups (BI) into sulfonated poly(ether ether ketone) (SPEEK) membranes. SPEEK/o-PBI/4,4′-diglycidyl(3,3′,5,5′-tetramethylbiphenyl) epoxy resin (TMBP) composite membranes in situ polymerization has been prepared for the purpose of improving the performance of SPEEK with high ion-exchange capacities (IEC) for the usage in the direct methanol fuel cells (DMFCs). The composite membranes with three-dimensional network structure are obtained through a cross-linking reaction between PBI oligomer and TMBP and the acid-base interaction between sulfonic acid groups and benzimidazole groups. Resulting membranes show a significantly increasing of all of the properties, such as high proton conductivity (0.14 S cm−1 at 80 °C), low methanol permeability (2.38 × 10−8 cm2 s−1), low water uptake (25.66% at 80 °C) and swelling ratio (4.11% at 80 °C), strong thermal and oxidative stability, and mechanical properties. Higher selectivity has been found for the composite membranes in comparison with SPEEK. Therefore, the SPEEK/o-PBI/TMBP composite membranes show a good potential in DMFCs usages. 相似文献
6.
《International Journal of Hydrogen Energy》2020,45(42):22209-22222
A copper chloride (CuCl) electrolyzer that constitutes of composite proton exchange membrane (PEM) that functions at medium-temperature (>100 °C) is beneficial for rapid electrochemical kinetics, and better in handling fuel pollutants. A synthesized polybenzimidazole (PBI) composite membrane from the addition of ZrO2 followed with phosphoric acid (PA) is suggested to overcome the main issues in CuCl electrolysis, including the copper diffusion and proton conductivity. PBI/ZrP properties improved significantly with enhanced proton conductivity (3 fold of pristine PBI, 50% of Nafion 117), superior thermal stability (>600 °C), good mechanical strength (85.17 MPa), reasonable Cu permeability (7.9 × 10−7) and high ionic exchange capacity (3.2 × 10−3 mol g−1). Hydrogen produced at 0.5 A cm−2 (115 °C) for PBI/ZrP and Nafion 117 was 3.27 cm3 min−1 and 1.85 cm3 min−1, respectively. The CuCl electrolyzer efficiency was ranging from 91 to 97%, thus proven that the hybrid PBI/ZrP membrane can be a promising and cheaper alternative to Nafion membrane. 相似文献
7.
Suwen Wang Peng Sun Zhongfang Li Guohong Liu Xiaoyan Yin 《International Journal of Hydrogen Energy》2018,43(21):9994-10003
On the study of high temperature proton exchange membrane (HTPEM), the trade-off between proton conductivity and physico-chemical property (such as mechanical strength, dimensional stability and methanol resistance) remained a main obstacle for comprehensive performance enhancement. To address this issue, novel HTPEM was prepared by doping phosphotungstic acid intercalated ferric sulfophenyl phosphate (FeSPP-PWA) into polybenzimidazole (PBI) via hot pressed method. Intense hydrogen bonding network was built between PBI and FeSPP-PWA, rendering construction of proton channels and reinforcement of physico-chemical property. As a novel proton conductor, FeSPP-PWA facilitated formation of efficient proton transfer pathway. The layered morphology and inorganic intrinsity of FeSPP-PWA also improved the mechanical and dimensional stability while reducing the methanol permeability of the PBI/FeSPP-PWA membranes. The composite membrane exhibited good thermal stability up to 200 °C. The proton conductivity of PBI/FeSPP-PWA (30 wt%) reached 110 mS cm?1 at 170 °C and 100% RH, and was 69.3 mS cm?1 at 180 °C and 50% RH. The PBI/FeSPP-PWA also showed low methanol permeability and high membrane selectivity for application in direct methanol fuel cells. 相似文献
8.
H. Ye J. Huang J.J. Xu N.K.A.C. Kodiweera J.R.P. Jayakody S.G. Greenbaum 《Journal of power sources》2008
Proton exchange membrane (PEM) fuel cells operating at elevated temperature, above 120 °C, will yield significant benefits but face big challenges for the development of suitable PEMs. The objectives of this research are to demonstrate the feasibility of the concept and realize [acid/ionic liquid/polymer] composite gel-type membranes as such PEMs. Novel membranes consisting of anhydrous proton solvent H3PO4, the protic ionic liquid PMIH2PO4, and polybenzimidazole (PBI) as a matrix have been prepared and characterized for PEM fuel cells intended for operation at elevated temperature (120–150 °C). Physical and electrochemical analyses have demonstrated promising characteristics of these H3PO4/PMIH2PO4/PBI membranes at elevated temperature. The proton transport mechanism in these new membranes has been investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopic methods. 相似文献
9.
Proton conducting membranes are the most crucial part of energy generating electrochemical systems such as polymer electrolyte membrane fuel cells (PEMFCs). In this work, Nafion based proton conducting anhydrous composite membranes were prepared via two different approaches. In the first, commercial Nafion115 and Nafion112 were swelled in the concentrated solution of azoles such as 1H-1,2,4-triazole (Tri), 3-amino-1,2,4-triazole (ATri) and 5-aminotetrazole (ATet) as heterocyclic protogenic solvents. In the second, the proton conducting films were cast from the Nafion/Azole solutions. The partial protonation of azoles in the anhydrous membranes were studied by Fourier transform infrared (FT-IR) spectroscopy. Thermal properties were investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results showed that Nafion/ATri and Nafion/ATet electrolytes are thermally stable at least up to 200 °C. Methanol permeability measurements showed that the composite membranes have lower methanol permeability compared to Nafion112. Nafion115/ATri system has better conductivity at 180 °C, exceeding 10−3 S/cm compared to other Nafion/heterocycle systems under anhydrous conditions. 相似文献
10.
《International Journal of Hydrogen Energy》2022,47(44):19086-19131
Due to their efficient and cleaner operation nature, proton exchange membrane fuel cells are considered energy conversion devices for various applications including transportation. However, the high manufacturing cost of the fuel cell system components remains the main barrier to their general acceptance and commercialization. The main strategy for lowering the cost of fuel cells which is critical for their general acceptance as alternative energy sources in a variety of applications is to lower the cost of the electrolyte and catalyst. An electrolyte is one of the most important components in the fuel cell and a major contributor to the cost (>$500/m2 for commercial Nafion® series). Nafion is widely used as an electrolyte in PEMs, but it has some limitations in addition to high costs such as low proton conductivity, high-temperature performance degradation, and high fuel crossover. Therefore, the development and manufacturing of low-cost and high-performance electrolyte membranes with higher conductivity (~0.1 S·cm ?1) at a wider temperature range is a top priority in the scientific community. Recent years have seen extensive research on the preparation, modification, and properties of PEMs such as non-Nafion membranes (SPI, PBI, polystyrene, polyphosphazene, SPAEK, SPEEK, SPAS, SPEN), and their composites by incorporating functionalized CNTs, GO as fillers to overcome their drawbacks. This paper provides a comprehensive review of membrane materials and manufacturing with a focus on PEMs. In particular, the review brings out the basic mechanism involved in proton conduction, important requirements, historical background, contending technologies, types, advantages and disadvantages, current developments, future goals, and directions design aspects related to thermodynamic and electrochemical principles, system assessment parameters, and the prospects and outlook. 相似文献
11.
A novel locally and densely sulfonated dianhydride with four sulfonic acid groups, 1,6,7,12-tetra[4-(sulfonic acid)phenoxy]perylene-3,4,9,10-tetracarboxylic dianhydride (SPTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 1,6,7,12-tetraphenoxyperylene-3,4,9,10-tetracarboxylic dianhydride (PTDA). Sulfonated copolyimides were prepared from SPTDA, nonsulfonated dianhydride 4,4′-binaphthyl-1,1′,8,8′-tetracarboxylic dianydride, 4,4′-diaminodiphenyl ether (a) or dodecane-1,12-diamine (b). The synthesized copolymers, with the -SO3H group on the polymer side chain, possess high molecular weights and high viscosities, and they form tough, flexible membranes. The copolymer membrane with an ion exchange capacity of 2.69 mequiv. g−1 had a proton conductivity of 0.126 S cm−1 at 20 °C and 0.292 S cm−1 at 100 °C; the latter is much higher than that of Nafion® 117 under the same conditions. The mechanical properties of the copolymer membranes were almost unchanged after accelerated water stability testing at 140 °C for 100 h; this indicates excellent hydrolytic stability of the synthesized copolyimides. 相似文献
12.
L. Pisani 《Journal of power sources》2009,194(1):451-455
In this work, the conductivity limits of sulfonated membranes are investigated through a model analysis. A recent analytical conductivity model has been modified by reducing the number of variables to only three parameters, representing the hydration level, the ion exchange capacity and the morphology of the membrane. The effects of these parameters on the conductivity are investigated through a parametric analysis, showing significant trends.Particular values of the morphology parameter define ideal conditions, in which the model conductivities constitute upper limits for real membranes. In particular, the model conditions of “ideal isotropic membrane” and “ideal non-tortuous membrane” are compared with the experimental proton conductivity of a number of polymeric membranes in the literature. It appears that membranes such as Nafion and Dow are close to the condition of “ideal isotropic membrane”, and their conductivity can be improved only by decreasing their tortuosity. On the other hand, the conductivity of other sulfonated polymers as SPEEK is well below the limit and can be enhanced by improving the membrane percolation properties. 相似文献
13.
This work reports the preparation and characterization of hybrid membranes cast from dispersions of inorganic fillers in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene solutions. Silica gel, SBA-15 and sepiolite, all of them functionalized with phenylsulfonic acid groups, were used as fillers. For comparative purposes, the performance of composite membranes cast from dispersions of functionalized inorganic fillers in Nafion® solutions was investigated. Inspection of the texture of the membranes by using SEM techniques shows that the fillers are better dispersed in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene than in Nafion®. The value of the water uptake for the membranes prepared from the former polyelectrolyte is in most cases at least three times that measured for hybrid Nafion® membranes. The conductivity of the membranes was measured at 80 °C by impedance spectroscopy obtaining values of 3.44, 6.90 and 3.54 S m−1 for the hybrid membranes based on the triblock copolymer containing functionalized silica gel, SBA-15 and sepiolite fillers, respectively. These results compare very favourably with those obtained at 80 °C for Nafion® hybrid membranes containing silica gel, SBA-15 and sepiolite, all of them fuctionalized with phenylsulfonic acid groups, whose conductivities are, 2.84, 6.75 and 3.31 S m−1, respectively. Resistance measurements carried out under controlled humidity conditions show that the conductivity of sulfonated triblock copolymer membranes containing functionalized SBA-15 filler undergoes a rather sharp increase when they are conditioned under an atmosphere of 75%, or larger, relative humidity. 相似文献
14.
Chi-An Dai Chien-Pan Liu Yi-Huan Lee Chun-Jie Chang Chi-Yang Chao Yao-Yi Cheng 《Journal of power sources》2008
The radiation hardening of various UV curable resins provides a simple but powerful method to fabricate thin films or membranes with desirable physical and chemical properties. In this study, we proposed to use this method to fabricate a novel proton exchange membrane (PEM) for direct methanol fuel cells (DMFC) with good mechanical, transport and stability properties. The PEM was prepared by crosslinking a mixture of a photoinitiator, a bifunctional aliphatic urethane acrylate resin (UAR), a trifunctional triallyl isocyanate (TAIC) crosslinker and tertrabutylammonium styrenesulfonate (SSTBA) to form a uniform network structure for proton transport. Key PEM parameters such as ion exchange capacity (IEC), water uptake, proton conductivity, and methanol permeability were controlled by adjusting the chemical composition of the membranes. The IEC value of the membrane was found to be an important parameter in affecting water uptake, conductivity as well as the permeability of the resulting membrane. Plots of the water uptake, conductivity, and methanol permeability vs. IEC of the membranes show a distinct change in the slope of their curves at roughly the same IEC value which suggests a transition of structural changes in the network. It is demonstrated that below the critical IEC value, the membrane exhibits a closed structure where hydrophilic segments form isolated domains while above the critical IEC value, it shows an open structure where hydrophilic segments are interconnected and form channels in the membrane. The transition from a closed to an open proton conduction network was verified by the measurement of the activation energy of membrane conductivity. The activation energy in the closed structure regime was found to be around 16.5 kJ mol−1 which is higher than that of the open structure region of 9.6 kJ mol−1. The membranes also display an excellent oxidative stability, which suggests a good lifetime usage of the membranes. The proton conductivities and the methanol permeabilities of all membranes are in the range of 10−4 to 10−2 S cm−1 and 10−8 to 10−7 cm2 s−1, respectively, depending on their crosslinking density. The membranes show great selectivity compared with those of Nafion®. The possibility of using this PEM for DMFC devices is suggested. 相似文献
15.
Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application 总被引:8,自引:0,他引:8
Composite membranes based on phosphotungstic acid (PWA) adsorbed on silica (SiO2) and polybenzimidazole (PBI) have been prepared and their physico-chemical properties have been studied. The membranes with high tensile strength and thickness of less than 30 μm can be cast. They are chemically stable in boiling water and thermally stable in air up to 400°C. Proton conductivity is influenced by the temperature (range: 30–100°C), relative humidity and PWA loading in the membrane. Maximum conductivity of 3.0×10−3 S/cm is obtained at 100% relative humidity and 100°C with membrane containing 60 wt.% PWA/SiO2 in PBI. Conductivity measurements performed at higher temperatures, in the range from 90°C to 150°C, give almost stable values of 1.4–1.5×10−3 S/cm at 100% relative humidity. 相似文献
16.
《International Journal of Hydrogen Energy》2020,45(33):16708-16723
Here we report enhanced power generation, faster transient response and longer durability of HT-PEMFC by employing a composite membrane of PBI with reduced graphene oxide (rGO) at an optimum loading of 1%. Easy and low cost synthesis of the composite membranes at different loading of rGO is achieved using methane sulfonic acid (MSA) as solvent that resolves the long-standing issue of poor solubility of PBI in the conventional solvents. Property and performance mapping with respect to rGO loading not only leads to attain the optimum but also identifies the window of feasible operating zone. It is observed that with very low (1%) rGO content, composite PBI membrane (rGO-PBI-1) offers the maximum enhancement of all properties viz water uptake, acid uptake, proton conductivity, ion exchange capacity, acid retention capacity, chemical stability, yield strength, while beyond a threshold/critical loading (~4%) deterioration of electrochemical and mechanical properties occur. Steady state performance analysis reveals almost two times peak power enhancement of HT-PEMFC using rGO-PBI-1 electrolyte membrane at an operating temperature of 170 °C; insitu impedance analysis during fuel cell operation reveals sharp decay in charge transfer resistance. Multiple step response analysis confirms (~2 times) faster transient response of fuel cell using rGO-PBI-1 while compared to that with pristine PBI membrane. Fuel cell stability analysis ensures longer durability of operation with negligible decay in voltage. 相似文献
17.
Ji-Hye Won Hyeon-Ji Lee Kyung-Suk Yoon Young Taik Hong Sang-Young Lee 《International Journal of Hydrogen Energy》2012
Sulfonated SBA-15 mesoporous silica (SM-SiO2)-incorporated sulfonated poly(phenylsulfone) (SPPSU) composite membranes are fabricated for potential application in low-humidity proton exchange membrane fuel cells (PEMFCs). The SM-SiO2 particles are synthesized using tetraethoxy silane (TEOS) as a mechanical framework precursor, Pluronic 123 triblock copolymer as a mesopore-forming template, and mercaptopropyl trimethoxysilane (MPTMS) as a sulfonation agent. A distinctive feature of the SM-SiO2 particles is the long-range ordered 1-D skeleton of hexagonally aligned mesoporous cylindrical channels bearing sulfonic acid groups. Based on a comprehensive characterization of the SM-SiO2 particles, the effect of SM-SiO2 (as a functional filler) addition on the proton conductivity of the SPPSU composite membrane is examined as a function of temperature and relative humidity. An intriguing finding is that the proton conductivity of the SPPSU composite membrane exhibits a strong dependence on the relative humidity of measurement conditions. This anomalous behavior is further discussed with an in-depth consideration of the characteristics and dispersion state of SM-SiO2 particles, which affect the tortuous path for proton movement, water uptake, and state of water. Notably, at low-humidity conditions, the SM-SiO2 particles in the SPPSU composite membrane serve as an effective water reservoir to tightly retain water molecules and also as a supplementary proton conductor, whereas they behave as a barrier to proton transport at fully hydrated conditions. 相似文献
18.
Sulfonated mesoporous organosilicate (s-MPOs) was synthesized by the one-step sol–gel method as a novel inorganic additive derived for use in the fuel cell. TEM observations revealed that the s-MPOs has well-ordered structure and many SO3H groups on the inner surface of the mesopores. The s-MPOs was added to the proton-conductive polymer matrix, polybenzimidazole (PBI) in the presence of H3PO4, and the proton conductivities were measured at 60–100 °C under controlled humidity. The PBI composites filled with only 1 wt% of s-MPOs gave proton conductivity more than 10-times higher than the original PBI/H3PO4 membrane. The s-MPOs possessing many SO3H groups were able to form effective proton conductive pathways via its periodic structure and to improve the conductivity. The greatest conductivity was estimated to be 0.21 S cm−1 at 80 °C and 98 %RH in case of a PBI/s-MPOs20 (incl. approx. 20 mol% of the SO3H units in MPS) composite. 相似文献
19.
The effect of an acidic inorganic additive, i.e. sulfated zirconia, on Nafion-based polymer electrolytes is evaluated by comparing the properties in terms of conductivity and fuel cell performance of a composite sulfated zirconia-added Nafion membrane with those of an additive-free Nafion membrane. The peculiar surface properties of the selected filler promote a higher hydration level and a higher conductivity for the composite membrane under unsaturated conditions, i.e. at 20% RH. Tests on H2-air fully humidified cells, monitored at 70 °C and at atmospheric pressure, reveal small differences when passing from a plain Nafion to a composite Nafion/sulfated zirconia membrane as electrolyte. However, remarkably great improvements are observed for the composite membrane-based cell when the comparison tests are run at low relative humidity and high temperature, this outlining the beneficial role of the sulfated zirconia additive. 相似文献
20.
Hydrogen permeation through the Pd-Nb-Pd composite membrane: Surface effects and thermal degradation 总被引:1,自引:0,他引:1
Vasily N. AlimovYuji Hatano Andrei O. Busnyuk Daniil A. LivshitsMikhail E. Notkin Alexander I. Livshits 《International Journal of Hydrogen Energy》2011,36(13):7737-7746
The composite membranes based on Group 5 metals are capable of H2 separation with the high speed and infinite selectivity. The chemical and thermal stability are critical issues for the application of such membranes in the field of hydrogen energy. In order to understand the degradation mechanisms, the H2 permeation through composite Pd2μm-Nb100μm-Pd2μm membranes was investigated in a very wide pressure range: (10−5-104) Pa. At higher pressures the surface contaminations only moderately decreased the permeation. However the permeation experiments at lower pressures demonstrated that an orders of magnitude change in the probability of H2 molecule dissociative sticking is actually hidden behind this relatively moderate effect. The membranes poisoned by the surface contaminations could be recovered by their exposure to O2 at (300-400) °C. Heating at temperature higher than 500 °C resulted in the irreversible decrease of permeation and in the pronounced change of permeation behavior at the variation of H2 pressure. An extremely high permeation was observed at lower pressures at the clean surface of Pd coating. That allows developing an effective membrane pump for hydrogen isotopes. 相似文献