首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Laminar burning velocities of four biomass derived gases have been measured at atmospheric pressure over a range of equivalence ratios and hydrogen contents, using the heat flux method on a perforated flat flame burner. The studied gas mixtures include an air-blown gasification gas from an industrial gasification plant, a model gasification gas studied in the literature, and an upgraded landfill gas (bio-methane). In addition, co-firing of the industrial gasification gas (80% on volume basis) with methane (20% on volume basis) is studied. Model simulations using GRI mechanisms and detailed transport properties are carried out to compare with the measured laminar burning velocities. The results of the bio-methane flame are generally in good agreement with data in the literature and the prediction using GRI-Mech 3.0. The measured laminar burning velocity of the industrial gasification gas is generally higher than the predictions from GRI-Mech 3.0 mechanism but agree rather well with the predictions from GRI-Mech 2.11 for lean and moderate rich mixtures. For rich mixtures, the GRI mechanisms under-predict the laminar burning velocities. For the model gasification gas, the measured laminar burning velocity is higher than the data reported in the literature. The peak burning velocities of the gasification gases/air and the co-firing gases/air mixtures are in richer mixtures than the bio-methane/air mixtures due to the presence of hydrogen and CO in the gasification gases. The GRI mechanisms could well predict the rich shift of the peak burning velocity for the gasification gases but yield large discrepancy for the very rich gasification gas mixtures. The laminar burning velocities for the bio-methane/air mixtures at elevated initial temperatures are measured and compared with the literature data.  相似文献   

4.
Ammonia (NH3) is a carbon-free fuel that shows great research prospects due to its ideal production and storage systems. The experimental data of the laminar burning velocity of NH3/H2/air flame at different hydrogen ratios (XH2 = 0.1–0.5), equivalent ratios (φ = 0.8–1.3), initial pressures (P = 0.1–0.7 MPa), and initial temperatures (T = 298–493 K) were measured. The laminar burning velocity of the NH3/H2/air flame increased upon increasing the hydrogen ratios and temperature, but it decreased upon increasing the pressure. The equivalent ratio of the maximum laminar burning velocity was only affected by the proportion of reactants. The equivalence ratio value of the maximum laminar burning velocity was between 1.1 and 1.2 when XH2 = 0.3. The chemical reaction kinetics of NH3/H2/air flame under four different initial conditions was analyzed. The less NO maximum mole fraction was produced during rich combustion (φ > 1). The results provide a new reference for ammonia as an alternative fuel for internal combustion engines.  相似文献   

5.
The laminar burning velocities and Markstein lengths for the methanol-air mixtures were measured at different equivalence ratios, elevated initial pressures and temperatures, and dilution ratios by using a constant volume combustion chamber and high-speed schlieren photography system. The influences of these parameters on the laminar burning velocity and Markstein length were analyzed. The results show that the laminar burning velocity of the methanol-air mixture decreases with an increase in initial pressure and increases with an increase in initial temperature. The Markstein length decreases with an increase in initial pressure and initial temperature, and increases with an increase in the dilution ratio. A cellular flame structure is observed at an early stage of flame propagation. The transition point is identified on the curve of flame propagation speed against stretch rate. The reasons for the cellular structure development are also analyzed.  相似文献   

6.
Both experimental and calculated laminar burning velocities of H2/O2/He mixtures were obtained, with equivalence ratios of 0.6–4.0, initial pressures of 0.1 MPa–0.5 MPa, initial temperature of 373 K, and dilution ratio of 7.0. Laminar burning velocities changed non-monotonically with the increasing initial pressures at equivalence ratios of 1.0–3.0. The decrease of overall reaction orders can explain the non-monotonic relationship between the laminar burning velocities and initial pressures. Consumption and production of both H and HO2 radicals were also obtained to explain the decrease of overall reaction order. The competition of H and HO2 radical between elemental reactions were also discussed. The three body reaction R15 (H + O2(+M) = HO2(+M)) gained more H radical in the competition with R1 (H + O2 = O + OH), producing more HO2 radical. Through the reaction pathway analysis, the restraint in production of both OH and H leaded to a reducing radical pool. The poorer reaction pool would restrain the overall reaction and lead to the reduction of overall reaction order and the non-monotonic behavior of the laminar burning velocity.  相似文献   

7.
8.
9.
Ammonia is considered as a promising hydrogen carrier, which is seen as a reliable carbon-free fuel. Improving the combustion properties of ammonia is the focus of current research. The hydrogen could be dissociated from the ammonia in real applications. For purpose of combustion, partially dissociated ammonia could be combusted directly without using extra hydrogen. Laminar burning velocity is an important combustion parameter, but there are only a few data of partially dissociated ammonia are reported. To fill the data gap, the laminar burning velocity was measured at various equivalence ratios and dissociation degrees of ammonia by the constant pressure spherical flame method in this study. Besides, fifteen kinetic models were compared with experimental data, and the model with the best consistency was obtained. The experimental results show that the laminar burning velocity increases monotonically with the increase of the dissociating degree. When ammonia is completely dissociated, the maximum laminar burning velocity increases from 7.9 cm/s to 228 cm/s, and the equivalence ratio corresponding to the peak value also shifts from 1.1 to 1.6. The laminar burning velocity predicted by the model constructed by Stagni is in best agreement with the experimental data. Moreover, data calculated by the five correlations for predicting laminar burning velocity were compared with the numerical data to verify that whether they are suitable for the mixtures with additional nitrogen. The results show that the correlation based on the activation temperature is the most accurate. However, it still has a maximum relative error of ±20% within the calculated range.  相似文献   

10.
An experimental and numerical study on the combined effect of N2/CO2 dilution and hydrogen addition on the laminar burning velocity (LBV) of methane-oxygen mixtures was conducted. The experiments were performed at atmospheric conditions using the heat flux method for effective equivalence ratios (ϕF) varying from 0.7 to 1.3. The results show that the hydrogen addition causes an increase in LBV for all the mixture conditions. The variation in LBV based on hydrogen addition parameter (RH) for all N2 dilution conditions were following a linearly increasing trend. The strong effect of hydrogen addition on LBV is observed at lean and rich mixtures compared to that at near stoichiometric mixture conditions. The experimental results show that the percentage variation in LBV with RH at rich mixture is more substantial at 75% N2 dilution compared to that at 65% N2 dilution.  相似文献   

11.
The aim of the present work is to contribute to the better understanding of the combustion process and the laminar flame properties of methane/hydrogen-air flames at elevated temperatures and pressures. The heat flux method provides an accurate and direct measurement of laminar burning velocities (LBV) at elevated temperatures, while the constant volume chamber method provides measurements at elevated pressures. In the present work, a database of more than 250 experimental points for the range of temperature (298–373 K) and pressure conditions (1–5 bar) for mixtures up to 50% hydrogen in methane was generated using these two methods. Comparison with the sparse literature data shows quite good agreement. A power-law correlation for temperature and pressure is proposed for methane/hydrogen-air mixtures, which has a practical application in estimating the LBV of a natural gas/hydrogen mixture intended to replace pure natural gas in different processes. The power-law temperature exponent, α, and the pressure exponent, β, show inverse trends. The former decreases almost linearly and the latter increases approximately linearly when the hydrogen content is increased. The power-law exponents are highly affected by the mixture equivalence ratio, ?, showing a parabola like trend. However, for the pressure exponent this trend becomes almost linear for 50% H2 in the mixture. The power-law correlation has been validated against experimental data for a wide range of temperature (up to 573 K), pressure (1–7.5 bar), equivalence ratios (? between 0.7 and 1.3) and H2 contents up to 50%.  相似文献   

12.
The laminar burning velocities of biogas-hydrogen-air mixture at different fuel compositions and equivalence ratios were determined and studied using the spherical flame method. The combined effects of H2 and CO2 on the laminar burning velocity were investigated quantitatively based on the kinetic effects and the thermal effects. The results show that the laminar burning velocities of the BG40, BG50 and BG60 are increased almost linearly with the H2 addition owing to the improved fuel kinetics and the increased adiabatic flame temperature. The dropping trend of laminar burning velocity from the BG60-hydrogen to the BG40-hydrogen is primarily attributed to the decreased adiabatic flame temperature (thermal effects). The GRI 3.0 mechanism can predict the laminar burning velocity of biogas-hydrogen mixture better than the San Diego mechanism in this study. Whereas, the GRI mechanism still needs to be modified properly for the hydrogen-enriched biogas as the CO2 proportion exceeds 50% in the biogas at the fuel-rich condition. The increased CO2 exerts the stronger suppression on the net reaction rate of H + O2=OH + O than that of H + CH3(+M) = CH4(+M), which contributes to that the rich-shift of peak laminar burning velocity of biogas-hydrogen mixture requires higher H2 addition as the CO2 content is enhanced. For the biogas-hydrogen fuel, the H2 addition decreases the flame stability of biogas fuel effectively due to the increased diffusive-thermal instability and hydrodynamic instability. The improved flame stability of biogas-hydrogen fuel with the increased CO2 content is resulted from the combined effects of diffusive-thermal instability and hydrodynamic instability.  相似文献   

13.
Oxygen-enriched combustion is of great interest for industrial applications, since membrane separation technology can be used. The objective of this work is to provide unique data on laminar burning velocity, a key parameter in real combustion development, for the oxygen-enriched combustion of an iso-octane/air mixture for various dilution (by air or CO2) cases. Experiments were carried out in a stainless steel combustion chamber at atmospheric pressure and 373 K. The iso-octane was mixed with a mixture of O2, CO2, and N2. The volume fraction of O2 was varied from 21% to 29% and CO2 was varied from 0% to 28%. The classical shadowgraphy technique was used to detect the reaction zone in order to deduce the un-stretched burning velocity, using a nonlinear methodology. All the experimental data were compared with the numerical results obtained with chemical kinetic schemes available in the literature. For further experimental investigations, a correlation is proposed to predict laminar burning velocity as a function of the quantity of O2 and CO2 in the gas mixture. Finally, analytical and experimental data concerning Markstein length are discussed.  相似文献   

14.
通过拓展层流火焰消耗速度的概念,将其定义与反应进程变量(progress variable)的定义相结合,给出了一个积分层流燃烧速度的广义定义。在准一维稳态系统中,分析了积分层流燃烧速度,以及其与未燃气体的位移速度和已燃气体的位移速度之间的关系。对甲烷-空气和丙烷-空气拉伸层流预混火焰在常温常压下进行了数值计算,研究了在不同当量比下,火焰拉伸对层流燃烧速度的影响,并得出了马克斯坦长度。对基于通过火焰前锋放热率的积分层流燃烧速度和基于燃料消耗率的积分层流燃烧速度进行了比较。结论表明低拉伸火焰的马克斯坦数与渐进分析一致,也与球形火焰获得的实验数据吻合。  相似文献   

15.
Hydrogen-rich mixtures generated by the on-board reforming of biomass-derived hydrous-ethanol can be used as a potential alternative fuel (i.e., reformed ethanol fuel, RE fuel). In this paper, outwardly propagating spherical flames were employed to observe the laminar flame characteristics of the gaseous mixtures composed of simulated RE fuel (mixture of 75% hydrous-ethanol and hydrogen) and air in a constant-volume combustion vessel at an initial temperature of 383 K, a pressure of 0.1 MPa, a hydrogen fraction from 0% to 80%, and an equivalence ratio from 0.6 to 1.6. The results show that the unstretched flame propagation speeds and burning velocities increase with increasing hydrogen fraction, especially when the fraction is above 40%. When the hydrogen fraction is less than 40%, the Markstein length and flame instability decrease and increase with the equivalence ratio, respectively, while the reverse holds when the hydrogen fraction is greater than 40%. At an equivalence ratio below 1.4, the Markstein length decreases with increasing hydrogen fraction, indicating a positive correlation between the flame instability and hydrogen fraction. At an equivalence ratio above 1.4, a negative relationship is observed. Finally, it is concluded that a hydrogen fraction of approximately 40% in simulated RE fuel is feasible for spark ignition engines by comparing the laminar burning characteristics of ethanol-air mixtures.  相似文献   

16.
Spherically expanding flames have been employed to determine the laminar flame speeds of liquefied petroleum gas–air mixtures, diluted or not by the combustion exhaust gas, over equivalence ratios from 0.7 to 1.4. The effect of the stretch imposed at the flame front has been explored experimentally, and Markstein lengths are estimated to characterize the flame stretch. After omitting the stretch effect, one has obtained the unstretched laminar burning velocities of liquefied petroleum gas–air flames with or without diluent. Explicit formulas have been obtained to express the laminar burning velocity dependencies on the equivalence ratio and diluent rate.  相似文献   

17.
Flame propagation of premixed nitrogen diluted natural gas/hydrogen/air mixtures was studied in a constant volume combustion bomb under various initial pressures. Laminar burning velocities and Markstein lengths were obtained for the diluted stoichiometric fuel/air mixtures with different hydrogen fractions and diluent ratios under various initial pressures. The results showed that both unstretched flame speed and unstretched burning velocity are reduced with the increase in initial pressure (except when the hydrogen fraction is 80%) as well as diluent ratio. The velocity reduction rate due to diluent addition is determined mainly by hydrogen fraction and diluent ratio, and the effect of initial pressure is negligible. Flame stability was studied by analyzing Markstein length. It was found that the increase of initial pressure and hydrogen fraction decreases flame stability and the flame tends to be more stable with the addition of diluent gas. Generally speaking, Markstein length of a fuel with low hydrogen fraction is more sensitive to the change of initial pressure than that of a one with high hydrogen fraction.  相似文献   

18.
Adding the product of water electrolysis (i.e. 2:1 volume of H2 and O2) is an effective strategy to enhance the combustion intensity of NH3/air mixtures. In this work, the laminar burning velocity (LBV) of the obtained NH3/H2/O2/air mixtures was measured at 303 K, 0.1 MPa and compared with the values predicted by seven mechanisms. To improve the prediction performance, a new mechanism is developed based on the existing mechanism and adopted for numerical simulation. The results of this study show that the LBV of NH3 is significantly increased by additional H2 and O2. By comparison, it is found that H2 shows a more significant promoting effect on LBV when the volume ratio of additional H2 and O2 is 2. The concentration of key radicals and the flame temperature increase remarkably due to the addition of H2 and O2, which promote the flame propagation. Furthermore, the experimental results also indicated that the additional H2 and O2 make the burned gas Markstein length decrease on the lean side and increase on the rich side.  相似文献   

19.
The effect of the addition of hydrogen to various multicomponent natural gas (NG) blends is experimentally and numerically investigated. All the experiments are performed at a pressure of 0.1 MPa, a temperature of 300 ± 3 K, and a range of equivalence ratios (Φ = 0.6 to 1.4), using a constant pressure freely propagating spherical flame method. Numerical simulations are performed using the CHEMKIN-PRO® simulation software, with three different chemical kinetic mechanisms. Laminar burning velocity (LBV) and burned gas Markstein length (Lb) of the various NG-H2 blends at three different levels of hydrogen in the fuel, viz., 25%, 50%, and 75%, are experimentally evaluated to assess the effect of the simultaneous presence of H2 and higher hydrocarbons (HC) in various NG blends. The addition of H2 enhances the combustion chemistry of all the NG blends, and hence, increases the LBV. However, the effect is more prominent for the NG6-H2 blend, which has a higher mole fraction of CH4. The NG5-H2 blend, which has a higher mole fraction of C3H8 maintains a positive Lb for a wider range of equivalence ratios (0.7–1.4). The LBV prediction using the GRI-MECH 3.0 mechanism is within the range of experimental uncertainty, for the blends with up to 50% H2 in the fuel. The prediction of LBV using GRI-MECH 3.0 is the closest to the experimental results for the blends with 75% H2 in the fuel when compared with those using San Diego and USC-MECH 2.0 mechanisms.  相似文献   

20.
The laminar burning velocity is a fundamental property of a fuel that affects many aspects of its combustion behaviour. Experimental values are required to validate kinetic simulations, and also to provide input for models of flashback, minimum ignition energy and turbulent combustion.A constant volume vessel (rated at 3.4 MPa) in conjunction with a multi-zone model was used to calculate burning velocity from pressure and schlieren data, allowing the user to select data uncorrupted by heat transfer or cellularity. Using the pressure rise data allows measurements to be derived for much higher pressures and temperatures than when the constant pressure data are used. A 12 term correlation for burning velocity was fitted to the data.n-Heptane, iso-octane, toluene, ethylbenzene and ethanol were tested over a wide range of initial pressures (50, 100, 200 and 400 kPa), temperatures (310, 380 and 450 K) and equivalence ratios (0.7–1.4), along with tests using combustion residuals at mole fractions of up to 0.3. The results compared favourably with the limited data already published, especially at high pressures. Conditions at the onset of cellularity are given for iso-octane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号