共查询到20条相似文献,搜索用时 15 毫秒
1.
David M. O'Donnell Steven W. Effler MaryGail Perkins Christopher Strait 《Journal of Great Lakes research》2013
A robust optical characterization of the underwater and emergent light fields of Lake Champlain was conducted for sites (n = 11) throughout the lake in August 2011, based on in situ measurements with modern instrumentation and laboratory measurements of optically active constituents (OACs) and components (ax) of the absorption coefficient (a). Inherent optical property (IOP) measurements included a, ax, and the particulate scattering and backscattering coefficients. Metrics of apparent optical properties (AOPs) included Secchi depth, the diffuse attenuation coefficients for downwelling [Kd(λ)] and scalar (K0) irradiance and remote sensing reflectance [Rrs(λ)]. The credibility of the measurements is demonstrated through: (1) consistency of relationships between OACs and IOPs and AOPs, (2) the approach toward equivalence of laboratory and field measurements, and (3) the extent of closure of predictions of Kd(λ) and Rrs(λ), based on IOP measurements and radiative transfer expressions, with paired observations of these AOPs (average differences of 9.4 and 19.3%). Wide spatial differences in OACs, and the resulting IOPs and AOPs, are documented throughout the bounds of the lake and are the result of its morphologic complexity and differing external loading. The lake is a complex case 2 system, with uncoupled variations in OACs and ax over the bounds of the lake. Both empirical and radiative transfer expressions are used to predict changes in AOPs in response to hypothetical changes in OACs. 相似文献
2.
3.
丹江口水库作为南水北调中线工程的水源地,其水质安全将直接影响到调水工程的成败。根据丹江口库区2012年3月25日和8月9日的两幅HJ卫星遥感影像,结合同步的实测水质参数,采用经验反演模型对丹江口水库叶绿素a(Chl_a)浓度、总磷(TP)浓度和水体透明度(SD)进行了定量反演研究。结果显示,无论是枯水期和丰水期,丹库和汉库入库口的Chl_a浓度和TP浓度都要高于其他区域,而入库口区域的SD要低于其他区域。通过分析14项实测水质指标的主成分分析结果和丹江口库区LULC遥感解译结果发现,枯水期库区TP主要来源于库区上游城镇生活污水和工业废水,而丰水期TP主要来自于农业面源污染。SD反演结果还显示,由于汉江上游降雨量大,水土流失严重,使得汉库水体透明度明显低于丹库。利用Chl_a反演结果对丹江口水库的水体营养状态进行分析后发现,在丹库、汉库入库口区域以及水体流通性较小的狭小水体,水库水体达到了轻度富营养化状态,因此,应该加强对库区面源污染的控制和生态环境修复。 相似文献
4.
In recent decades, three important events have likely played a role in changing the water temperature and clarity of the Laurentian Great Lakes: 1) warmer climate, 2) reduced phosphorus loading, and 3) invasion by European Dreissenid mussels. This paper compiled environmental data from government agencies monitoring the middle and lower portions of the Great Lakes basin (lakes Huron, Erie and Ontario) to document changes in aquatic environments between 1968 and 2002. Over this 34-year period, mean annual air temperature increased at an average rate of 0.037 °C/y, resulting in a 1.3 °C increase. Surface water temperature during August has been rising at annual rates of 0.084 °C (Lake Huron) and 0.048 °C (Lake Ontario) resulting in increases of 2.9 °C and 1.6 °C, respectively. In Lake Erie, the trend was also positive, but it was smaller and not significant. Water clarity, measured here by August Secchi depth, increased in all lakes. Secchi depth increased 1.7 m in Lake Huron, 3.1 m in Lake Ontario and 2.4 m in Lake Erie. Prior to the invasion of Dreissenid mussels, increases in Secchi depth were significant (p < 0.05) in lakes Erie and Ontario, suggesting that phosphorus abatement aided water clarity. After Dreissenid mussel invasion, significant increases in Secchi depth were detected in lakes Ontario and Huron. 相似文献
5.
6.
David M. O'Donnell Steven W. Effler Christopher M. Strait George A. Leshkevich 《Journal of Great Lakes research》2010
In situ measurements of inherent (IOPs) and apparent optical properties (AOPs), along with laboratory measurements of optically active constituents, were made at sites (n = 14) in western Lake Erie following a wind event to advance the characterization of the underwater and emergent light fields of these waters and to support related IOP-based model development and testing. Modern instrumentation was used to make spectral (wavelength, λ) measurements of the IOPs of absorption [a(λ)], particulate scattering [bp(λ)], and particulate backscattering [bbp(λ)] coefficients, and the AOPs of remote sensing reflectance [Rrs(λ)], and the diffuse attenuation coefficient for downwelling irradiance [Kd(λ)]. Optical closure analyses were conducted to demonstrate the credibility of the measurements, by comparing AOP observations to predictions based on radiative transfer expressions that utilized IOP measurements as inputs. Substantial spectral variations in a and its contributing components, and more modest wavelength dependencies for bp and bbp, were documented that are consistent with observations reported for marine case 2 systems. The backscattering ratio, bbp:bp, was strongly positively related to the contribution of minerogenic particles to the overall concentration of suspended particulate material. Major spatial differences in both IOPs and AOPs were observed that were driven by the attendant differences in the concentrations and composition of the optically active constituents, but particularly minerogenic particles, mediated in part by sediment resuspension. Good optical closure between the independently measured IOPs and AOPs was achieved. Direct measurement of bbp(λ) was found to be critical to pursue closure for Rrs(λ) and thereby support related remote sensing initiatives. 相似文献
7.
Richard H. Becker Mohamed I. Sultan Gregory L. Boyer Michael R. Twiss Elizabeth Konopko 《Journal of Great Lakes research》2009
Toxin-producing Cyanobacteria have been documented in Lake Erie and Ontario in the last several years. We developed algorithms to discriminate potentially toxic cyanobacterial blooms from other harmless phytoplankton blooms and to extract relative phycocyanin abundances from Moderate Resolution Imaging Spectrometer (MODIS) satellite data. Lee's quasi-analytical algorithm was used to calculate total absorption and backscatter from the 250 m, 500 m and 1 km bands of MODIS scenes. A non-negative least square algorithm was then utilized to discern relative concentrations of Chlorophyta (green algae), phycocyanin-rich Cyanobacteria (blue-green algae), and colored dissolved organic matter and suspended sediments combined in lake waters using published absorption spectra for these components. MODIS-derived cyanobacterial concentrations and/or bloom distributions from 10 scenes acquired in the summers of 2004 and 2005 were successfully verified against contemporaneous calibrated measurements of pigments that were acquired from measurements made using continuous fluorimetric measurements of surface water (1 m depth) from six cruises, and three additional cyanobacterial blooms reported in the scientific literature between 2002 and 2006. These results demonstrate that this methodology could be used to develop a cost-effective practical screening method for rapid detection and warning of potentially toxic cyanobacterial blooms in the lower Great Lakes. 相似文献
8.
An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg 总被引:1,自引:0,他引:1
C.E. Binding T.A. Greenberg G. McCullough S.B. Watson E. Page 《Journal of Great Lakes research》2018,44(3):436-446
Lake Winnipeg has experienced dramatic increases in nutrient loading and phytoplankton biomass over the last few decades, accompanied by a marked shift in community composition towards the dominance of cyanobacteria. Comprehensive lake-wide observations of algal blooms are critical to assessing the lake's health status, its response to nutrient management practices, and an improved understanding of the processes driving blooms. We present an analysis of the spatial and temporal variability of algal blooms on Lake Winnipeg using satellite-derived chlorophyll and indices for algal bloom intensity, spatial extent, severity, and duration over the period of ESA's MERIS mission (2002–2011). Imagery documented extensive blooms covering as much as 93% of the lake surface. Bloom conditions were analysed in the context of in-lake and watershed processes to gain further insight on the drivers of bloom events. Day to day bloom variability was driven primarily by intermittent wind mixing events, with quiescent periods leading to the formation of dense surface blooms. Seasonal bloom distribution was consistent with light limitation in the south basin and lake circulation transporting bloom material towards the north-east shore. Inter-annual variability in average bloom severity was related to both total phosphorus (TP) loadings and summer lake surface temperatures. Results provide a valuable historical time series of bloom conditions to which ongoing observations from Sentinel-3's OLCI sensor can be added for longer term monitoring and change detection. 相似文献
9.
Accurate assessment and monitoring of coastal and inland water quality by satellite optical remote sensing is challenging due to improper atmospheric correction algorithm, inaccurate quantification of in-water constituents' concentration and a lack of efficient models to predict the water quality status. The present study aims to address the latter two parts in conjugation with an appropriate atmospheric correction algorithm to assess trophic status and water quality conditions of two coastal lagoons using Landsat-8 OLI data. Three vital underwater light attenuating factors, directly related to water quality, are considered namely, turbidity, chlorophyll and colored dissolved organic matter (aCDOM). These water quality parameters are quantified based on certain sensitive normalised water-leaving radiance band ratios and threshold values. To assess the accuracy of the derived products, these algorithms were applied to independent in-situ data and statistical evaluation of the results showed good agreement between the estimated and measured values with the errors within desirable limits. Being a primary nutrient indicator, the chlorophyll concentration was used to evaluate Trophic State Index. The Water Quality Index was derived from three parameters namely, chlorophyll concentration, turbidity and aCDOM(443) which were expressed in terms of Trophic State Index, Turbidity Index and Humic-Fulvic Index, respectively. The Water Quality Index maps, derived using a Fuzzy Inference System based on the Centre of Gravity method, provided insights into spatial structures and temporal variability of water quality conditions of the coastal lagoons which are influenced by anthropogenic factors, hydrographic changes and land-ocean-atmospheric interaction processes. 相似文献
10.
Collins Onyango Ongore Christopher Mulanda Aura Zachary Ogari James M. Njiru Chrisphine Sangara Nyamweya 《Journal of Great Lakes research》2018,44(6):1273-1280
Invasive aquatic macrophytes in Lake Victoria including water hyacinth (Eichhornia crassipes) exhibit periodic cyclical patterns of decline and proliferation with attendant ecological and economic impacts. This study aimed to monitor the extent of macrophytes and other invasive weeds on Lake Victoria to establish their impact on fisheries. The study employed a combination of remote sensing and geographical information system (GIS) techniques to estimate the coverage of water hyacinth and other invasive macrophytes. Data on fish landings and their respective market values were acquired from the Electronic Fish Market Information Service (EFMIS) database, which is hosted by the Kenya Marine and Fisheries Research Institute (KMFRI). Analysis of consistent temporal satellite data showed that the weeds frequently cover sheltered bays and river mouths. These areas of Winam Gulf had higher coverage (average 5000?ha) of macrophytes than the open waters (<200?ha). The proliferation of the invasive weeds showed fluctuations over the study period reaching the highest peak between September and November 2016. Other aquatic plants that have invaded the littoral areas of Lake Victoria include Egeria densa, Ceratophyllum demersum and Potamogeton spp. Increased coverage of macrophytes was found to be correlated inversely with the commercially important tilapia Oreochromis niloticus, but not with other species. The study concludes that there is a need for sustained monitoring of the invasive macrophytes alongside ecosystem modelling studies using the available time series data to clearly identify the ecological factors that drive water hyacinth dynamics and predict more precisely its impact on the fishery. 相似文献
11.
This paper describes research undertaken by the authors to develop an integrated measurement and modeling methodology for water quality management of estuaries. The approach developed utilizes modeling and measurement results in a synergistic manner. Modeling results were initially used to inform the field campaign of appropriate sampling locations and times, and field data were used to develop accurate models.Remote sensing techniques were used to capture data for both model development and model validation. Field surveys were undertaken to provide model initial conditions through data assimilation and determine nutrient fluxes into the model domain. From field data, salinity relationships were developed with various water quality parameters, and relationships between chlorophyll a concentrations, transparency, and light attenuation were also developed. These relationships proved to be invaluable in model development, particularly in modeling the growth and decay of chlorophyll a. Cork Harbour, an estuary that regularly experiences summer algal blooms due to anthropogenic sources of nutrients,was used as a case study to develop the methodology. The integration of remote sensing, conventional fieldwork, and modeling is one of the novel aspects of this research and the approach developed has widespread applicability. 相似文献
12.
Integrated Water Resource Development Plan for Sustainable Management of Mayurakshi Watershed, India using Remote Sensing and GIS 总被引:1,自引:0,他引:1
V. M. Chowdary D. Ramakrishnan Y. K. Srivastava Vinu Chandran A. Jeyaram 《Water Resources Management》2009,23(8):1581-1602
Integrated watershed management requires a host of inter-related information to be generated and studied in relation to each
other. Remote sensing technique provides valuable and up-to-date spatial information on natural resources and physical terrain
parameters. Geographical Information System (GIS) with its capability of integration and analysis of spatial, aspatial, multi-layered
information obtained in a wide variety of formats both from remote sensing and other conventional sources has proved to be
an effective tool in planning for watershed development. In this study, area and locale specific watershed development plans
were generated for Mayurakshi watershed, India using remote sensing and GIS techniques. Adopting Integrated Mission for Sustainable
Development (IMSD) guidelines, decision rules were framed. Using the overlay and decision tree concepts water resource development
plan was generated. Indian Remote Sensing Satellite (IRS-1C), Linear Imaging Self Scanner (LISS-III) satellite data along
with other field and collateral data on lithology, soil, slope, well inventory, fracture have been utilized for generating
land use/land cover and hydro geomorphology of the study area, which are an essential prerequisites for water resources planning
and development. Spatial data integration and analyses are carried out in GIS environment. 相似文献
13.
The U.S. Environmental Protection Agency's Great Lakes National Program Office (GLNPO) has collected water quality data from the five Great Lakes annually since 1993. We used the GLNPO observations made since 2002 along with coincident measurements made by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the Moderate-resolution Imaging Spectroradiometer (MODIS) to develop a new band-ratio algorithm for estimating chlorophyll concentrations in the Great Lakes from satellite observations. The new algorithm is based on a third-order polynomial model using the same maximum band ratios employed in the standard NASA algorithms (OC4 for SeaWiFS and OC3M for MODIS). The sensor-specific coefficients for the new algorithm were obtained by fitting the relationship to several hundred matched field and satellite observations. Although there are some seasonal variations in some lakes, the relationship between the observed chlorophyll values and those modeled using the new coefficients is fairly stable from lake to lake and across years. The accuracy of the satellite chlorophyll estimates derived from the new algorithm was improved substantially relative both to the standard NASA retrievals and to previously published algorithms tuned to individual lakes. Monte-Carlo fits to randomly selected subsets of the observations allowed us to estimate the uncertainty associated with the retrievals purely as a function of the satellite data. Our results provide, for the first time, a single simple band ratio method for retrieving chlorophyll concentrations in the offshore “open” waters of the Great Lakes from satellite observations. 相似文献
14.
We review the literature dealing with retrievals of chlorophyll concentrations in the Great Lakes from satellite observations. Most studies show that the satellite estimates of chlorophyll concentrations are linearly related to the observed concentrations, though they tend to overestimate concentrations at lower values and underestimate them at higher values. Deviations from a consistent, accurate, linear relationship can be attributed to temporal and spatial variations in the inherent optical properties of the color producing agents in the water as well as to varying concentrations of non-algal substances that interfere with the retrievals. We confirmed these results by using a simple optical model to examine the sensitivity of the retrieved chlorophyll values to the concentrations of interfering substances and to differences in model parameters. Because the spatial and temporal optical properties of the Great Lakes are unpredictable, no retrieval method is likely to produce accurate results all the time. The papers we reviewed show that simple band ratio algorithms can provide chlorophyll estimates that are proportional to in situ concentrations. The published literature suggests that the band ratio methods will be of most value in regions where the concentrations of non-algal interfering substances are minimal. Because of these limitations we recommend that future papers presenting chlorophyll analysis based on satellite data provide confirming field observations that include measurements of chlorophyll, suspended particles and dissolved organic carbon. We also recommend that Great Lakes scientists explore novel methods for retrieving chlorophyll concentrations from satellite observations that have proven useful in other optically complex waters. 相似文献
15.
Tara R. Hohman Robert W. Howe Douglas C. Tozer Erin E. Gnass Giese Amy T. Wolf Gerald J. Niemi Thomas M. Gehring Greg P. Grabas Christopher J. Norment 《Journal of Great Lakes research》2021,47(2):534-545
Coastal wetlands in the Laurentian Great Lakes undergo frequent, sometimes dramatic, physical changes at varying spatial and temporal scales. Changes in lake levels and the juxtaposition of vegetation and open water greatly influence biota that use coastal wetlands. Several regional studies have shown that changes in vegetation and lake levels lead to predictable changes in the composition of coastal wetland bird communities. We report new findings of wetland bird community changes at a broader scale, covering the entire Great Lakes basin. Our results indicate that water extent and interspersion increased in coastal wetlands across the Great Lakes between low (2013) and high (2018) lake-level years, although variation in the magnitude of change occurred within and among lakes. Increases in water extent and interspersion resulted in a general increase in marsh-obligate and marsh-facultative bird species richness. Species like American bittern (Botaurus lentiginosus), common gallinule (Gallinula galeata), American coot (Fulica americana), sora (Porzana carolina), Virginia rail (Rallus limicola), and pied-billed grebe (Podilymbus podiceps) were significantly more abundant during high water years. Lakes Huron and Michigan showed the greatest increase in water extent and interspersion among the five Great Lakes while Lake Michigan showed the greatest increase in marsh-obligate bird species richness. These results reinforce the idea that effective management, restoration, and assessment of wetlands must account for fluctuations in lake levels. Although high lake levels generally provide the most favorable conditions for wetland bird species, variation in lake levels and bird species assemblages create ecosystems that are both spatially and temporally dynamic. 相似文献
16.
Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting(RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model(SWMM) was employed with rain barrel low-impact development(LID) as a flood reduction measure. The Hydrologic Engineering Center's River Analysis System(HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction.Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match,i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%e60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04 e0.45 m~3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area. 相似文献
17.
Donna L. Witter Joseph D. Ortiz Sarah Palm Robert T. Heath Judith W. Budd 《Journal of Great Lakes research》2009
The feasibility of satellite-based monitoring of phytoplankton chlorophyll a concentrations in Lake Erie is assessed by applying globally calibrated, ocean-derived color algorithms to spatially and temporally collocated measurements of SeaWiFS remote sensing reflectance. Satellite-based chlorophyll a retrievals were compared with fluorescence-based measurements of chlorophyll a from 68 field samples collected across the lake between 1998 and 2002. Twelve ocean-derived color algorithms, one regional algorithm derived for the Baltic Sea's Case 2 waters, and a set of regional algorithms developed for the western, central and eastern basins of Lake Erie were considered. While none of the ocean-derived algorithms performed adequately, the outlook for the success of regionally calibrated and validated algorithms, with forms similar to the ocean-derived algorithms, is promising over the eastern basin and possibly the central basin of the lake. In the western basin, each of the regional algorithms considered performed poorly, indicating that alternative approaches to algorithm development, or to satellite data screening and analysis procedures will be needed. 相似文献
18.
Caren E. Binding John H. JeromeRobert P. Bukata William G. Booty 《Journal of Great Lakes research》2007,33(4):828-841
Satellite observations of aquatic colour enable environmental monitoring of the Great Lakes at spatial and temporal scales not obtainable through ground-based monitoring. By merging data from the Coastal Zone Color Scanner (CZCS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly binned images of water-leaving radiance over the Great Lakes have been produced for the periods 1979–1985 and 1998–2006. This time-series can be interpreted in terms of changes in water clarity, showing seasonal and inter-annual variability of bright-water episodes such as phytoplankton blooms, re-suspension of bottom sediments, and whiting events. Variations in Secchi disk depth over Lakes Erie and Ontario are predicted using empirical relationships from coincident measurements of water transparency and remotely-sensed water-leaving radiance. Satellite observations document the extent to which the water clarity of the lower Great Lakes has changed over the last three decades in response to significant events including the invasion of zebra mussels. Results confirm dramatic reductions in Lake Ontario turbidity in the years following mussel colonization, with a doubling of estimated Secchi depths. Evidence confirms a reduction in the frequency/intensity of whiting events in agreement with suggestions of the role of calcium uptake by mussels on lake water clarity. Increased spring-time water clarity in the eastern basin of Lake Erie also corroborates previous observations in the region. Despite historical reports of localised increases in transparency in the western basin immediately following the mussel invasion, image analysis shows a significant increase in turbidity between the two study periods, in agreement with more recent reports of longer term trends in water clarity. Through its capacity to provide regular and readily interpretable synoptic views of regions undergoing significant environmental change, this work illustrates the value of remotely sensing water colour to water clarity monitoring in the lower Great Lakes. 相似文献
19.
Marco Pilotti Giulia Valerio Claudia Giardino Mariano Bresciani Steven C. Chapra 《Journal of Great Lakes research》2018,44(1):14-25
During an initial field survey in 2012, we observed an unexpected asymmetry of dissolved oxygen distribution between the western and eastern side in northern Lake Iseo. Motivated by this apparent anomaly, we conducted a detailed field investigation, and we used a physical model of the northern part of the lake to understand the influences that might affect the distribution of material in the northern section of the lake. These investigations suggested that the Earth's rotation has significant influence on the inflow of the lake's two main tributaries. In order to further crosscheck the validity of these results, we conducted a careful analysis at a synoptic scale using images acquired during thermally unstratified periods by Landsat-8 and Sentinel-2 satellites. We retrieved and post-processed a large set of images, providing conclusive evidence of the role exerted by the Earth's rotation on pollutant transport in Lake Iseo and of the greater environmental vulnerability of the north-west shore of this lake, where important settlements are located. Our study confirms the necessity for three-dimensional hydrodynamic models including Coriolis effect in order to effectively predict local impacts of inflows on nearshore water quality of medium-sized elongated lakes of similar scale to Lake Iseo. 相似文献
20.
Jacky Cao Xiaoli Liu Xiang Su Jonas Eilertsen Hædahl Thomas Berg Fjellestad Donjete Haziri André Hoang-An Vu Jari Koskiaho Satu Maaria Karjalainen Anna-kaisa Ronkanen Sasu Tarkoma Pan Hui 《水科学与水工程》2024,17(3):236-248
Water covers most of the Earth’s surface and is nowhere near a good ecological or recreational state in many areas of the world. Moreover, only a small fraction of the water is potable. As climate change-induced extreme weather events become ever more prevalent, more and more issues arise, such as worsening water quality problems. Therefore, protecting invaluable and useable drinking water is critical. Environmental agencies must continuously check water sources to determine whether they are in a good or healthy state regarding pollutant levels and ecological status. The currently available tools are better suited for stationary laboratory use, and domain specialists lack suitable tools for on-site visualisation and interactive exploration of environmental data. Meanwhile, data collection for laboratory analysis requires substantial time and significant effort. We, therefore, developed an augmented reality system with a Microsoft HoloLens 2 device to explore the visualisation of water quality and status in situ. The developed prototype visualises geo-referenced sensor measurements incorporated into the perspective of the surroundings. Any users interested in water bodies’ conditions can quickly examine and retrieve an overview of water body status using augmented reality and then take necessary steps to address the current situation. 相似文献