首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using solid obstacles to accelerate the deflagration to detonation transition (DDT) process induces additional thrust loss, and fluidic obstacles can alleviate this problem to a certain extent. A detailed simulation is conducted to investigate the effects of multiple groups of fluidic obstacles on the flame acceleration and DDT process under different initial velocities and gas types. The results show that, initially, the propagation of reflected shock wave formed by jet impingement is opposite to the flame acceleration direction, thus increasing the initial jet velocity will hinder the flame acceleration. Later, the vortex structure and enhanced turbulence can promote flame acceleration. As the flame accelerates, the virtual blockage ratio of the fluidic obstacles decreases, and increasing initial jet velocity or using reactive jet gases both affect the virtual blockage ratio. Further, increasing initial jet velocity or using reactive jet gases can shorten the detonation initiation time and distance. Compared with solid obstacles, it is concluded that fluidic obstacles can achieve faster detonation initiation with a smaller blockage ratio. Overall, the detonation phenomena in this study are all triggered by hot spots formed by the interaction between reflected waves and distorted flame, but the formation of reflected waves varies.  相似文献   

2.
Flame acceleration and deflagration-to-detonation transition (DDT) in a channel containing an array of staggered cylindrical obstacles and a stoichiometric hydrogen-air mixture were studied by solving the fully-compressible reactive Navier-Stokes equations using a high-order numerical algorithm and adaptive mesh refinement. Four different longitudinal spacings (ls) of the neighboring obstacle rows (i.e., ls = 15.28, 19.1, 25.4, and 38.2 mm, corresponding to 1.2, 1.5, 2 and 3 times of obstacle diameter, respectively) were used to examine the effect of obstacle spacing on flame acceleration and DDT. The results show that the main mechanisms of flame acceleration and transition to detonation in all the cases studied are consistent. While the flame acceleration is caused by the growth of flame surface area in the initial stage, it is governed by shock-flame interactions in the later stage when shock waves are generated. The focusing of strong shocks at flame front is responsible for the initiation of detonation. It was found that the flame propagation speed and the DDT run-up distance and time are highly dependent on ls. Specifically, the flame acceleration declines as ls increases, since a larger ls leads to less disturbance of flow by obstacles per unit channel length. For detonation initiation, both the run-up distance and time increase with the increase of ls. It is interesting to note that the DDT distance and time increase significantly as ls increases from 19.1 mm to 25.4 mm. This is related to the slowdown of the increase rate of energy release over a period before DDT occurs under large ls condition, because every time the flame passes over an obstacle row the shock-flame interaction is delayed and numerous isolated pockets of unburned gas material are formed.  相似文献   

3.
Numerical simulations were performed to study flame acceleration and deflagration-to-detonation transition (DDT) in hydrogen-air mixture in a channel with a two-dimensional array of cylindrical obstacles. A high-order numerical algorithm with adaptive mesh refinement was applied to solve reactive Navier-Stokes equations. The effect of obstacle layout was examined by considering three layouts at a fixed blockage ratio of 0.5: staggered, inline-concentrated, and inline-scattered. Three blockage ratios, 0.33, 0.5, and 0.67, were used for the case of staggered obstacles to explore the influence of blockage ratio. The results show that both obstacle layout and blockage ratio have significant effects on flame acceleration and DDT occurrence, although the basic mechanism of detonation initiation is consistent for all the cases involving shock focusing. In the staggered case, the head-on collisions of flame and pressure waves with obstacles greatly promote the growth of flame surface area and thus lead to the fastest flame acceleration and shortest detonation onset time. In the inline-concentrated case, flame propagates slower than that in the staggered case due to smaller flame surface area. However, compared to the zigzag path in the staggered case, the straight passages parallel to flame propagation direction in the inline-concentrated case are more conducive to producing strong shock focusing and thus result in the shortest DDT distance. In the inline-scattered case, the straight passage along the centerline of channel facilitates the early acceleration of flame, but it has the slowest flame propagation in lateral directions and thereby the longest DDT time and distance. For the staggered obstacles at different blockage ratios, flame acceleration rate increases with increasing blockage ratio. The occurrence of DDT is hindered by the most congested obstacles, because the shock focusing is insufficiently strong to initiate detonation after passing through the excessively narrow gaps.  相似文献   

4.
Computational Fluid Dynamics solvers are developed for explosion modelling and hazards analysis in Hydrogen air mixtures. The work is presented in two parts. These include firstly a numerical approach to simulate flame acceleration and deflagration to detonation transition (DDT) in hydrogen–air mixture and the second part presents comparisons between two approaches to detonation modelling. The detonation models are coded and the predictions in identical scenarios are compared. The DDT model which is presented here solves fully compressible, multidimensional, transient, reactive Navier–Stokes equations with a chemical reaction mechanism for different stages of flame propagation and acceleration from a laminar flame to a highly turbulent flame and subsequent transition from deflagration to detonation. The model has been used to simulate flame acceleration (FA) and DDT in a 2-D symmetric rectangular channel with 0.04 m height and 1 m length which is filled with obstacles. Comparison has been made between the predictions using a 21-step detailed chemistry as well as a single step reaction mechanism. The effect of initial temperature on the run-up distances to DDT has also been investigated.  相似文献   

5.
A numerical approach has been developed to simulate flame acceleration and deflagration to detonation transition in hydrogen-air mixture. Fully compressible, multidimensional, transient, reactive Navier–Stokes equations are solved with a chemical reaction mechanism which is tuned to simulate different stages of flame propagation and acceleration from a laminar flame to a turbulent flame and subsequent transition from deflagration to detonation. Since the numerical approach must simulate both deflagrations and detonations correctly, it is initially tested to verify the accuracy of the predicted flame temperature and velocity as well as detonation pressure, velocity and cell size. The model is then used to simulate flame acceleration (FA) and transition from deflagration to detonation (DDT) in a 2-D rectangular channel with 0.08 m height and 2 m length which is filled with obstacles to reproduce the experimental results of Teodorczyk et al.The simulations are carried out using two different initial ignition strengths to investigate the effects and the results are evaluated against the observations and measurements of Teodorczyk et al.  相似文献   

6.
The accidental release of hydrogen into enclosures can result in a flammable mixture with concentration gradients and possible deflagration-to-detonation transition (DDT). This numerical study aims to investigate the effect of obstacle spacing and mixture concentration on the DDT in a homogeneous and inhomogeneous hydrogen-air mixture. The paper focuses on the mechanisms behind the DDT in two mixtures with an average hydrogen concentration of 15% and 30%. Unlike the near-stoichiometric mixture, in the lean mixture, DDT only occurs in the inhomogeneous mixture. Depending on obstacle spacing, three different regimes of DDT were observed in the near-stoichiometric inhomogeneous mixture: i) Detonation was ignited when a strong Mach stem formed and propagated between the obstacles; ii) two explosion centers appeared when incident shock and Mach stem reflected from upper and lower obstacles, respectively; iii) Mach stem did not form but DDT occurred behind the flame front at the top of the obstacle.  相似文献   

7.
Two-dimensional numerical simulations of deflagration-to-detonation transition (DDT) in hydrogen–air mixtures are presented and compared with experiments. The investigated geometry was a 3 m long square channel. One end was closed and had a single obstacle placed 1 m from the end, and the other end was open to the atmosphere. The mixture was ignited at the closed end. Experiments and simulations showed that DDT occurred within 1 m behind the obstacle. The onset of detonation followed a series of local explosions occurring far behind the leading edge of the flame in a layer of unburned reactants between the flame and the walls. A local explosion was also seen in the experiments, and the pressure records indicated that there may have been more. Furthermore, local explosions were observed in the experiments and simulations which did not detonate. The explosions should have sufficient strength and should explode in a layer of sufficient height to result in a detonation.  相似文献   

8.
The effect of cool flame partial oxidation on the detonation sensitivity of a hydrocarbon fuel was investigated experimentally. The detonation sensitivity was quantified by measuring the run-up distance required for a deflagration to transit to a detonation wave (DDT) in a rough tube. Fuel rich pentane-oxygen mixtures at sub-atmospheric initial pressures were studied. Subsequent to the injection of the mixture into a heated detonation tube, the mixture underwent cool flame oxidation after a well-controlled delay time, dependent on the temperature of the tube. Typical delays ranged from 0.5 to 2 s (depending on temperature) and were reproducible to within one hundred milliseconds. This delay permitted the mixture in the detonation tube to be spark-ignited at various stages of the cool flame process using an igniter driven by a delay generator. The results show that increasing mixture temperature from room temperature to values below the cool flame region (below 250°C) resulted in an increase in run-up distance. However, as the mixture began to undergo cool flame oxidization, a significant reduction in the run-up distance was obtained (as large as 50%). The sensitization effect was found to occur only at the initial stage of the cool flame oxidation reaction. If the mixture was ignited at times long after the onset of cool flame, the mixture was found to be desensitized and the run-up distance increased. The sensitizing effect of the cool flame partial oxidation may be attributed to the presence of peroxides and free radicals associated with the initial cool flame process. However, these radical species are consumed as the cool flame reaction proceeds and the mixture becomes insensitive again.  相似文献   

9.
We present a numerical investigation of gaseous deflagration-to-detonation transition (DDT) triggered by a shock in a multi-bend geometry. The ethylene-air mixture filled rigid tube with obstacles is considered for understanding the effects of complex confinement and initial flame size on DDT. Our calculations show generation of hot spots by flame and strong shock interactions, and flame propagation is either restrained or accelerated due to the wall obstacles of both straight and bent tubes. The effect of initial flame size on DDT in complex confinement geometry is analyzed as well as the hot spot formation on promoting shock–flame interaction, leading to a full detonation.  相似文献   

10.
Here the promotion of flame acceleration and deflagration-to-detonation transition (DDT) using the distributed photo ignition of photo-sensitive nanomaterials suspended in fuel/oxidizer mixtures is demonstrated for the first time. Distributed photo ignition was carried out by suspending single-walled carbon nanotubes (SWCNTs) with Fe impurity in quiescent C2H4/O2/N2 mixtures and flashing them with an ordinary Xe camera flash. Following the flash, the distributed SWCNTs photo ignite and subsequently provide a quasi-distributed ignition of the C2H4/O2/N2 mixture. In a closed detonation tube the quasi-distributed photo ignition at one end of the tube leads to the promotion of flame acceleration and DDT and, for sensitive C2H4/O2 mixtures, appears to lead to direct detonation initiation or multiple combustion fronts. The DDT run-up distance, the distance required for the transition to detonation, was measured using ionization sensors and was found to be approximately a factor of 1.5× to 2× shorter for the distributed photo ignition process than for traditional single-point spark ignition. It is hypothesized that the increased volumetric energy release rate resulting from distributed photo-ignition enhances DDT due to the decreased ignition delay and greater early-time flame area and turbulence levels, which in turn result in accelerated formation and amplification of the leading shock and accelerated DDT.  相似文献   

11.
An experimental study of flame propagation, acceleration and transition to detonation in hydrogen–air mixture in 2-m long rectangular cross-section channel filled with obstacles located at the bottom wall was performed. The initial conditions of the hydrogen–air mixture were 0.1 MPa and 293 K. Three different cases of obstacle height (blockage ratio 0.25, 0.5 and 0.75) and four cases of obstacle density were studied with the channel height equal to 0.08 m. The channel width was 0.11 m in all experiments. The propagation of flame and pressure waves was monitored by four pressure transducers and four in-house ion probes. The pairs of transducers and probes were placed at various locations along the channel in order to get information about the progress of the phenomena along the channel. To examine the influence of mixture composition on flame propagation and DDT, the experiments were performed for the compositions of 20%, 25% and 29.6% of H2 in air by volume. As a result of the experiments the deflagration and detonation regimes and velocities of flame propagation in the obstructed channel were determined.  相似文献   

12.
The present study aims to test the capability of our newly developed density-based solver, ExplosionFoam, for flame acceleration (FA) and deflagration-to-detonation transition (DDT) in mixtures with concentration gradients which is of important safety concern. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM® and uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [7], which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position, speed and pressure profiles. Qualitatively, the numerical simulations have reproduced well the flame acceleration and DDT phenomena observed in the experiment. The results have revealed that in the computed cases, DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion, but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can be potentially re-ignited once more fresh air is available in an accidental scenario, resulting in subsequent explosions.  相似文献   

13.
Combustion of hydrogen can take place in different modes such as laminar flames, slow and fast deflagrations and detonations. As these modes have widely varying propagation mechanisms, modeling the transition from one to the other presents a challenging task. This involves implementation of different sub-models and methods for turbulence-chemistry interaction, flame acceleration and shock propagation. In the present work, a unified numerical framework based on OpenFOAM has been evolved to simulate such phenomena with a specific emphasis on the Deflagration to Detonation Transition (DDT) in hydrogen-air mixtures. The approach is primarily based on the transport equation for the reaction progress variable. Different sub-models have been implemented to capture turbulence chemistry interaction and heat release due to autoignition. The choice of sub-models has been decided based on its applicability to lean hydrogen mixtures at high pressures and is relevant in the context of the present study. Simulations have been carried out in a two dimensional rectangular channel based on the GraVent experimental facility. Numerical results obtained from the simulations have been validated with the experimental data. Specific focus has been placed on identifying the flame propagation mechanisms in smooth and obstructed channels with stratified initial distribution. In a smooth channel with stratified distribution, it is observed that the flame surface area increases along the propagation direction, thereby enhancing the energy release rate and is identified to be the key parameter leading to strong flame acceleration. When obstacles are introduced, the increase in burning rate due to turbulence induced by the obstacles is partly negated by the hindrance to the unburned gases feeding the flame. The net effect of these competing factors leads to higher flame acceleration and propagation mechanism is identified to be in the fast deflagration regime. Further analysis shows that several pressure pulses and shock complexes are formed in the obstacle section. The ensuing decoupled shock-flame interaction augments the flame speed until the flame coalesces with a strong shock ahead of it and propagates as a single unit. At this point, a sharp increase in propagation speed is observed thus completing the DDT process. Subsequent propagation takes place at a uniform speed into the unburned mixture.  相似文献   

14.
在无阀式脉冲爆震发动机模型机上进行了多循环喷雾两相爆震的实验研究.点火后爆震管内压力上升需要一定的延迟时间,但是迅速增压过程是在火焰传播到一定区域后开始的,在该区域形成向两个方向传播的压缩波,向未燃区传播的压缩波不断加强,形成爆震波,向已燃区传播的压缩波不断衰减;爆震峰值压力沿流向不断增加,压力上升速度加快,峰值随机差异放大;通过对压力历程的分析,用两种方法估算了两相爆震波诱导区的长度.实验中发现,两相爆震的点火延迟时间远大于爆燃向爆震转变的时间,两者之和相对于高频爆震循环非常可观,是限制两相脉冲爆震发动机频率提高的关键因素,并分析了多循环工作时的吸气和排气过程.  相似文献   

15.
Not all accidental releases of flammable gases and vapors create explosions. Most releases do not find an ignition source, and of those that do ignite, most of them result in deflagrations that generate low or moderate overpressures. Under some circumstances, however, it is possible for deflagration-to-detonation transition (DDT) to occur, and this can be followed by a propagating detonation that quickly consumes the remaining detonable cloud. In a detonable cloud, a detonation creates the worst accident that can happen. Because detonation overpressures are much higher than those in a deflagration and continue through the entire detonable cloud, the damage from a DDT event is more severe.This paper first provides a brief summary of our knowledge to date of the fundamental mechanisms of flame acceleration and DDT. This information is then contrasted to and combined with evidence of detonations (detonation markers) obtained from large-scale tests and actual large vapor cloud explosions (VCEs), including events at Buncefield (UK), Jaipur (India), CAPECO (Puerto Rico), and Port Hudson (US). The major conclusion from this review is that detonations did occur in prior VCEs in at least part of the VCE accidents. Finally, actions are suggested that could be taken to minimize detonation hazards.  相似文献   

16.
As a carbon-free fuel and a hydrogen-energy carrier, ammonia is a potential candidate for future energy utilization. Therefore, in order to promote the application of ammonia in detonation engines and to evaluate the safety of ammonia related industrial process, DDT experiments for ammonia/oxygen mixtures with different ERs were carried out in a large-scale horizontal tube. Moreover, pressure transducers and self-developed temperature sensors were applied to record the overpressure and the instantaneous flame temperature during DDT process. The results show that the DDT process in ammonia/oxygen mixtures contains four stages: Slow propagation stage, Flame and pressure wave acceleration stage, Fast propagation and detonation wave formation stage, Detonation wave self-sustained propagation stage. For stoichiometric ammonia/oxygen mixtures, flame front and the leading shock wave propagate one after another with different velocity, until they closely coupled and propagated together with one steady velocity. At the same time, it is found that an interesting retonation wave propagates backward. The peak overpressure, detonation velocity, and flame temperature of the self-sustained detonation are 2 MPa, 2000 m/s and 3500 K, respectively. With the ER increased from 0.6 to 1.6, the detonation velocities and peak overpressures ranged from 2310 m/s to 2480 m/s and 25.6 bar–28.7 bar, respectively. In addition, the detonation parameters of ammonia were compared with those of methane and hydrogen to evaluate the detonation performance and destructiveness of ammonia.  相似文献   

17.
《Combustion and Flame》2007,148(1-2):4-47
This paper summarizes a 10-year theoretical and numerical effort to understand the deflagration-to-detonation transition (DDT). To simulate DDT from first principles, it is necessary to resolve the relevant scales ranging from the size of the system to the flame thickness, a range that can cover up to 12 orders of magnitude in real systems. This computational challenge resulted in the development of numerical algorithms for solving coupled partial and ordinary differential equations and a new method for adaptive mesh refinement to deal with multiscale phenomena. Insight into how, when, and where DDT occurs was obtained by analyzing a series of multidimensional numerical simulations of laboratory experiments designed to create a turbulent flame through a series of shock–flame interactions. The simulations showed that these interactions are important for creating the conditions in which DDT can occur. Flames enhance the strength of shocks passing through a turbulent flame brush and generate new shocks. In turn, shock interactions with flames create and drive the turbulence in flames. The turbulent flame itself does not undergo a transition, but it creates conditions in nearby unreacted material that lead to ignition centers, or “hot spots,” which can then produce a detonation through the Zeldovich gradient mechanism involving gradients of reactivity. Obstacles and boundary layers, through their interactions with shocks and flames, help to create environments in which hot spots can develop. Other scenarios producing reactivity gradients that can lead to detonations include flame–flame interactions, turbulent mixing of hot products with reactant gases, and direct shock ignition. Major unresolved questions concern the properties of nonequilibrium, shock-driven turbulence, stochastic properties of ignition events, and the possibility of unconfined DDT.  相似文献   

18.
In this study, the detonation propagation mechanisms for the stoichiometric hydrogen-oxygen mixture are explored systematically in a circular tube with 6-m in length and an inner diameter of 90-mm. The continuous orifice plates with BR = 0.93 are adopted to investigate the characteristics of detonation diffraction, failure and initiation. High-speed piezoelectric pressure transducers are used to obtain the average velocity, and the smoked foil technique is adopted to record the detonation cellular patterns. The results indicate that three various propagation regimes can be observed, i.e., steady detonation, quasi-detonation and fast flame. In the smooth tube, only the steady detonation and fast flame modes are seen. When the initial pressure is greater than the critical value, the detonation can propagate at about the theoretical CJ velocity. Near the critical pressure, a sudden velocity drop is observed. Of note is that the single-headed spin and double-headed detonation cannot occur because of the limitation of the aspect ratio. In the tube filled with obstacles, the averaged wave velocity is decayed severely. Only the mechanisms of the quasi-detonation and fast flame can be seen. In the quasi-detonation mode, the critical value of d/λ is greater than 7.36, which is far larger than 1. Two different detonation ignition regimes produced by the shock reflection from the wall are observed, i.e., the initiation positions occur in the vicinity of the tube wall and the surface of the orifice plate.  相似文献   

19.
Hydrogen-oxygen flame acceleration and transition from deflagration to detonation (DDT) in channels with no-slip walls were studied theoretically and using high resolution simulations of 2D reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, real equation of state and a detailed chemical reaction mechanism. It is shown that in “wide” channels (D > 1 mm) there are three distinctive stages of the combustion wave propagation: the initial short stage of exponential acceleration; the second stage of slower flame acceleration; the third stage of the actual transition to detonation. In a thin channel (D < 1 mm) the flame exponential acceleration is not bounded till the transition to detonation. While velocity of the steady detonation waves formed in wider channels (10, 5, 3, 2 mm) is close to the Chapman-Jouguet velocity, the oscillating detonation waves with velocities slightly below the CJ velocity are formed in thinner channels (D < 1.0 mm). We analyse applicability of the gradient mechanism of detonation ignition for a detailed chemical reaction model to be a mechanism of the deflagration-to-detonation transition. The results of high resolution simulations are fully consistent with experimental observations of flame acceleration and DDT in hydrogen-oxygen gaseous mixtures.  相似文献   

20.
二维守恒元和求解元方法在两相爆轰流场计算中的应用   总被引:2,自引:0,他引:2  
应用二维守恒元和求解元方法数值模拟脉冲爆轰发动机内汽油/空气两相燃烧转爆轰的过程.分析了爆轰波从开始产生到形成稳定的全过程.研究了点火能量对燃烧转爆轰过程的影响:点火能量越小,DDT时间越长;若点火能量过小就不能形成DDT.同时研究了液滴半径对爆轰参数的影响:液滴半径增大,爆轰波压力和速度随之减小,DDT时间增加;液滴半径过大,则爆轰波不能形成.爆轰波压力计算值与实验值两者趋势符合得较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号