首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical hydrogen production from water splitting is one of the effective methods for hydrogen production that has recently attracted particular attention. One of the limitations of the electrochemical water splitting method is the slow oxygen evolution reaction (OER), which leads to an increase in overpotential and a decrease in hydrogen production efficiency. Here, Ni–Mo–S ultra-thin nanosheets were synthesized using the pulse reverse electrochemical deposition technique, and then this electrode was used as an electrode material for accelerating hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). Remarkably, the optimized electrode needs only 74 mV to attain the 10 mA cm−2 current density in HER and require only 1.3 V vs RHE potential in the UOR process. Also, results showed that the replacement of the UOR with the OER process resulted in a significant improvement in the electrochemical production of hydrogen in which for delivering the current density of 10 mA cm−2 in overall urea electrolysis, only 1.384 V is needed. In addition, outstanding catalytic stability was obtained, after 50 h electrolysis, the voltage variation was negligible. Such outstanding catalytic activity and stability was due to 3-D ultrathin nanosheets, the synergistic effect between elements, and the superhydrophilic/superaerophobic nature of fabricated electrode.  相似文献   

2.
Replacing dynamics-restricted oxygen evolution reaction (OER) with smart urea oxidation reaction (UOR) is very important for reducing the power consumption for hydrogen production. Here, the Co3Mo3N-400/NF is prepared using a facial way, which exhibits remarkable catalytic performances for UOR, hydrogen evolution reaction (HER) and overall urea electrolysis (OUE) because of the more exposed active sites and high electrical conductivity. At 100 mA/cm2, the Co3Mo3N-400/NF shows a small potential of 1.356 V vs. RHE (reversible hydrogen electrode) for UOR, which is much lower than that for OER. Furthermore, for HER, to reach to 100 mA/cm2, a low overpotential of 299 mV is required, and the urea has negligible influence on the HER process. For OUE, the Co3Mo3N-400/NF||Co3Mo3N-400/NF shows a small cell potential of 1.481 V at 100 mA/cm2 along with a good durability. Our work provides more choice for future OUE to generate hydrogen.  相似文献   

3.
Electrochemical water splitting to produce hydrogen is one of the most important technologies for energy storage and conversion. Urea oxidation reaction (UOR) with a lower electrode potential instead of oxygen evolution reaction (OER, water-splitting anode) in the water-urea electrolysis is an energy-saving approach. In this paper, NiMoO4–Ni(OH)2/NF is synthesized by hydrothermal reactions and explored as both hydrogen evolution reaction (HER) and UOR catalyst electrodes. This composite catalyst shows high catalytic bifunctional activities towards both HER and UOR. To validate both catalytic UOR and HER activities and durability, a two-electrode water-urea electrolyzer composed of NiMoO4–Ni(OH)2/NF as both anode and cathode materials is constructed (NiMoO4–Ni(OH)2/NF||NiMoO4–Ni(OH)2). Experiments show that a voltage of 1.341 V with a high stability (over 3000 CV cycles) can be achieved at 10 mA cm−2, which are much better than those obtained using a Pt/C||IrO2.  相似文献   

4.
To meet the demand of producing hydrogen at low cost, a molybdenum (Mo)-doped cobalt oxide (Co3O4) supported on nitrogen (N)-doped carbon (x%Mo–Co3O4/NC, where x% represents Mo/Co molar ratio) is developed as an efficient bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This defect engineering strategy is realized by a facile urea oxidation method in nitrogen atmosphere. Through X-ray diffraction (XRD) refinement and other detailed characterizations, molybdenum ion (Mo4+) is found to be doped into Co3O4 by substituting cobalt ion (Co2+) at tetrahedron site, while N is doped into carbon matrix simultaneously. 4%Mo–Co3O4/NC is the optimized sample to show the lowest overpotentials of 91 and 276 mV to deliver 10 mA cm?2 for HER and OER in 1 M potassium hydroxide solution (KOH), respectively. The overall water splitting cell 4%Mo–Co3O4/NC||4%Mo–Co3O4/NC displays a voltage of 1.62 V to deliver 10 mA cm?2 in 1 M KOH. The Mo4+ dopant modulates the electronic structure of active cobalt ion (Co3+) and boosts the water dissociation process during HER, while the increased amount of lattice oxygen and formation of pyridinic nitrogen due to Mo doping benefits the OER activity. Besides, the smaller grain size owing to Mo doping leads to higher electrochemically active surface area (ECSA) on 4%Mo–Co3O4/NC, resulting in its superior bifunctional catalytic activity.  相似文献   

5.
Developing efficient, stable and ideal urea oxide (UOR) electrocatalyst is key to produce green hydrogen in an economical way. Herein, Ru doped three dimensional (3D) porous Ni3N spheres, with tannic acid (TA) and urea as the carbon and nitrogen resources, is synthesized via hydrothermal and low-temperature treated process (Ru–Ni3N@NC). The porous nanostructure of Ni3N and the nickel foam provide abundant active sites and channel during catalytic process. Moreover, Ru doping and rich defects favor to boost the reaction kinetics by optimizing the adsorption/desorption or dissociation of intermediates and reactants. The above advantages enable Ru–Ni3N@NC to have good bifunctional catalytic performance in alkaline media. Only 43 and 270 mV overpotentials are required for hydrogen evolution (HER) and oxygen evolution (OER) reactions to drive a current of 10 mA cm?2. Moreover, it also showed good electrocatalytic performance in neutral and alkaline seawater electrolytes for HER with 134 mV to drive 10 mA cm?2 and 83 mV to drive 100 mA cm?2, respectively. Remarkably, the as-designed Ru–Ni3N@NC also owns extraordinary catalytic activity and stability toward UOR. Moreover, using the synthesized Ru–Ni3N@NC nanomaterial as the anode and cathode of urea assisted water decomposition, a small potential of 1.41 V was required to reach 10 mA cm?2. It can also be powered by sustainable energy sources such as wind, solar and thermal energies. In order to make better use of the earth's abundant resources, this work provides a new way to develop multi-functional green electrocatalysts.  相似文献   

6.
The urea solution electrolysis has become more attractive than water splitting, because it not only produces clean H2 via the cathodic hydrogen evolution reaction (HER) with lower cell voltage, but also treats sewage containing urea through anodic urea oxidation reaction (UOR). However, lack of efficient electrocatalysts for HER and UOR has limited its development. Herein, hairy sphere -like Ni9S8/CuS/Cu2O composites were synthesized on nickel foam (NF) in situ by a two-step hydrothermal method. The Ni9S8/CuS/Cu2O/NF exhibited good electrocatalytic activity for both HER (?0.146 V vs. RHE to achieve 10 mA cm?2) and UOR (1.357 V vs. RHE to achieve 10 mA cm?2). Based on the bifunctional properties of Ni9S8/CuS/Cu2O/NF, a dual-electrode urea solution electrolytic cell was constructed, which only needed a low voltage of 1.47 V to reach a current density of 10 mA cm?2, and displayed a good stability during a 20-h test. In addition, the reason for the good catalytic activity of Ni9S8/CuS/Cu2O/NF was analyzed and the UOR mechanism was discussed in detail. Our research shows that Ni9S8/CuS/Cu2O/NF is a very promising low-cost dual-function electrocatalyst, which can be used for high-efficiency electrolysis of urea solution to produce hydrogen and treat wastewater.  相似文献   

7.
In this work, N-Ni1Co3Mn0.4O/NF is synthesized as multifunctional electrocatalyst for hydrogen evolution (HER), urea oxidation reaction (UOR) and hydrazine oxidation reaction (HzOR). The optimal Ni/Co (molar ratio) and the amount of doping Mn are investigated, the sample with Ni/Co = 1:3 and the addition of 0.4 mmol Mn exhibits the best catalytic activity with the largest specific surface area. Then the two-electrode electrolyzers composed of N-Ni1Co3Mn0.4O/NF are constructed, and the results from experiments show that the voltage required for overall hydrazine splitting (OHzS) at 100 mA cm?2 is 0.272 V, 1.614 V lower than that of overall water splitting (OWS, 1.886 V), while the overall urea splitting (OUS) needs 1.669 V, 0.187 V lower than that of OWS, revealing the outstanding thermodynamic and kinetic advantages of OUS and OHzS. The superior performance may be attributed to the heterostructure between metal and metal oxide and N-doping, which can promote electron transfer and optimizes the decomposition of urea and hydrazine hydrate and hydrogen production, and the research on mechanism will be carried out in the future.  相似文献   

8.
Water electrolysis is one of the important methods for hydrogen production, but the oxygen evolution reaction (OER) on the anode has a higher theoretical potential. Using urea oxidation reaction (UOR) instead of OER has been an energy-saving method because it has a lower theoretical potential and also can reduce pollution. In this paper, NiCoZn LDH/NF, P–NiCoZn LDH/NF-X (X is the atom ratio of P) = 10%, 15%, 20%) were synthesized through typically hydrothermal and calcination methods. P–NiCoZn LDH/NF-15% was demonstrated to be abifunctional electrocatalyst towards HER and UOR. When P–NiCoZn LDH/NF-15% is used as the anode and cathode for urea-water electrolysis,it shows that when the current density is 100 mA cm?2, the voltage is 1.479 V for urea-water electrolysis, which is much better than that of IrO2/NF||Pt/C/NF (1.698 V). Thus, P–NiCoZn LDH/NF-15% is expected to replace precious metals for practical applications.  相似文献   

9.
Developing highly efficient bifunctional urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) catalysts for urea splitting to hydrogen are one of the strategies to cope with the energy crisis. Here, a series of CrxPy-a/ComPn-b composites were synthesized on Ni foam through hydrothermal and low-temperature phosphorization process for the first time. It is worth noting that CrxPy-1/ComPn-3@NF exhibited excellent UOR performance (1.331 V at 100 mA cm?2) and HER performance (0.299 V at 100 mA cm?2) in an electrolyte of 1 M KOH and 0.5 M urea due to the synergistic effect of Cr–Co. The CrxPy-1/ComPn-3@NF||CrxPy-1/ComPn-3@NF two-electrode system call for only 1.52 V to provide current density of 10 mA cm?2, which is one of the best electrochemistry performances reported up to now. Experimental analysis show that the promoted electrochemistry performances is assigned to faster charge transfer rate, the exposure of more reaction site and better properties of metals. Density Functional theory (DFT) results demonstrate that the presence of the ComPn material accelerates the kinetics of hydrogen production and the CrxPy material improves the properties of metals for the electrode. The work provides a new idea to develop the environmentally friendly and low cost overall urea splitting catalyst with transition metals instead of noble metals.  相似文献   

10.
In this study, FeCo2O4@Co3O4 bifunctional catalysts with a unique structure combining nanosheets and nanowires were prepared on nickel foam by a simple hydrothermal + annealing method. The catalysts exhibited excellent catalytic activity for hydrogen production during urea electrooxidation reaction (UOR) and ethanol oxidation reaction (EOR). For UOR, the potential at 10 mA/cm2 current density is 1.387 V and the tafel slope is 67 mV/dec. In the configured two-electrode electrolytic cell, the FeCo2O4@Co3O4 catalysts in the UOR and EOR processes required only 1.425 and 1.471 V, respectively, to produce a current density of 10 mA/cm2, which is much less than that of the (oxygen evolution reaction) OER (1.640 V). In addition, the current density remained stable at a fixed potential during a long time (20 h) i-t test in the urea solution.  相似文献   

11.
Energy-efficient production of hydrogen through urea electrolysis is still challenging due to the lack of satisfactory catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) in urea containing solution. In this study, Ni–WxC/C (x = 1,2) composite with high activity for urea electrocatalysis was prepared by direct electro-reduction of affordable feedstock of NiO–CaWO4–C in molten CaCl2–NaCl at 873–973 K. The addition of graphite in precursor decreases the particle size of Ni. Introducing WxC into Ni particles can reduce the overpotential for UOR. As a result, the obtained Ni-WxC/graphite composite exhibits high current density for urea oxidation, which is about 11-folds and 52-folds higher than that of Ni/graphite and Ni (@1.53 V vs. RHE), respectively. After changing the carbon source from graphite to CNTs, the anodic current density was further increased by 43%, reaching 50.31 mA cm?2. Moreover, the cathodic catalyst WxC/CNTs obtained by the same preparation process exhibits high performance towards HER, with a low onset potential of 131.5 mV and a Tafel slope of 69.5 mV dec?1. Assembling an electrolyzer using Ni-WxC/CNTs as anode and WxC/CNTs as cathode can yield a current density of 10 mA cm?2 at merely 1.65 V in 1 M KOH/0.33 M urea aqueous solution, with excellent long-term electrochemical durability. The environmental-friendly production process uses affordable feedstocks for the synthesis of efficient catalysts toward urea electrolysis, promising an energy-saving hydrogen production as well as waste treatment.  相似文献   

12.
Constructing high-efficient and nonprecious electrocatalysts is of primary importance for improving the efficiency of water splitting. Herein, a novel sunflower plate-like NiFe2O4/CoNi–S nanosheet heterostructure was fabricated via facile hydrothermal and electrodeposition methods. The as-fabricated NiFe2O4/CoNi–S heterostructure array exhibits remarkable bifunctional catalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. It presents a small overpotential of 219 mV and 149 mV for OER and HER, respectively, to produce a current density of 10 mA cm?2. More significantly, when the obtained electrodes are used as both the cathode and anode in an electrolyzer, a voltage of 1.57 V is gained at 10 mA cm?2, with superior stability for 72 h. Such outstanding properties are ascribed to: the 3D porous network structure, which exposes more active sites and accelerates mass transfer and gas bubble emission; the high conductivity of CoNi–S, which provides faster charge transport and thus promotes the electrocatalytic reaction of the composites; and the effective interface engineering between NiFe2O4 (excellent performance for OER) and CoNi–S (high activity for HER), which leads to a shorter transport pathway and thus expedites electron transfer. This work provides a new strategy for designing efficient and inexpensive electrocatalysts for water splitting.  相似文献   

13.
Designing cost-effective bifunctional catalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline electrolyte remains a significant challenge. Herein, we report adding Nb to pristine CoP nanowires enhances the material's catalytic activities towards HER and OER. Density functional theory (DFT) calculation unravels that the Nb atoms not only optimize hydrogen binding abilities on CoP surface, but also modulate the surface electron densities of in situ formed β-CoOOH during anodic oxidation, thereby greatly accelerate both the HER and OER kinetics in alkaline solutions. In addition, an alkaline electrolyzer using Nb-doped CoP nanowires as cathode and anode for overall water splitting, delivers 100 mA cm?2 at low cell voltage of 1.70 V, superior to Pt//RuO2 couple. This doping strategy can be extended to other transition metal phosphides as multifunctional catalysts towards overall water splitting and beyond.  相似文献   

14.
Designing highly efficient and low-cost electrocatalysts is essential for water splitting. Herein, urchin-like Co3O4 microspheres are firstly grown on nickel foam by a hydrothermal method, then Oxygen vacancies, phosphorus doping are effectively assembled in Co3O4 electrocatalysts. The introduction of oxygen vacancies and phosphorus doping will adjust the electronic structure of Co which increase the intrinsic catalytic activity and improve the adsorption energy of intermediates, simultaneously, progressively transform the crystal into randomly arranged atoms structure with short range order resulting in more active sites participate in the catalytic reaction. Moreover, the catalyst of vacancies Co3O4-Ov and phosphorus doping Co3O4–P demonstrate excellent performance in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media, Co3O4-Ov sample served as anode while Co3O4–P as cathode to form an electrolytic cell needs only 1.58 V to reach 20 mA cm?2 for overall water splitting.  相似文献   

15.
The design and development of low-cost, abundant reserves, high catalytic activity and durability bifunctional electrocatalysts for water splitting are of great significance. Here, simple hydrothermal and hydrogen reduction methods were used to fabricate a uniform distribution of Fe-doped MoO2/MoO3 sheets with abundant oxygen vacancies and heterojunctions on etched nickel foam (ENF). The Fe– MoO2/MoO3/ENF exhibited a small overpotential of 36 mV at 10 mA cm−2 for hydrogen evolution reaction (HER), an excellent oxygen evolution reaction (OER) overpotential of 310 mV at 100 mA cm−2 and outstanding stabilities of 95 h and 120 h for the HER and OER, respectively. As both cathode and anode catalysts, the heterogeneously structured Fe– MoO2/MoO3/ENF required a low cell voltage of 1.57 V at 10 mA cm−2. Density functional theory (DFT) calculations show that Fe doping and MoO2/MoO3 heterojunctions can significantly reduce the band gap of the electrode, accelerate electron transport and reduce the potential barrier for water splitting. This work provides a new approach for designing metal ion doping and heterostructure formation that may be adapted to transition metal oxides for water splitting.  相似文献   

16.
The development of cheap, efficient, and active non-noble metal electrocatalysts for total hydrolysis of water (oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) is of great significance to promote the application of water splitting. Herein, a heterogeneous structured electrode based on FeAlCrMoV high-entropy alloy (HEA) was synthesized as a cost-effective electrocatalyst for hydrogen and oxygen evolution reactions in alkaline media. In combination of the interfacial synergistic effect and the high-entropy coordination environment, flower-like HEA/MoS2/MoP exhibited the excellent HER and OER electrocatalytic performance. It showed a low overpotential of 230 mV at the current density of 10 mA cm−2 for OER and 148 mV for HER in alkaline electrolyte, respectively. Furthermore, HEA/MoS2/MoP as both anode and cathode also exhibited an overpotential of 1.60 V for overall water splitting. This work provides a new strategy for heterogeneous structure construction and overall water splitting based on high-entropy alloys.  相似文献   

17.
It is crucial for the storage and conversion of hydrogen energy to substitute the low theoretical potential of urea oxidation reaction (UOR) for the high theoretical potential of anodic water electrolysis (oxygen evolution reaction (OER)). In this paper, it puts forward a brief and scalable strategy, so as to synthesize a novel bifunctional nickel-iron layered double hydroxide and multi-walled carbon nanotube composites supported on Ni foam, represented as NiFe-LDH/MWCNTs/NF. Electrochemical measurements demonstrate that NiFe-LDH/MWCNTs/NF is able to realize an efficient electrocatalysis for UOR. During this process, merely a potential of 1.335 V is needed at 10 mA cm−2, which can be taken to replace OER, thus reducing overpotential in H2-production as well as power consumption. In addition, NiFe-LDH/MWCNTs/NF also exhibits electro-defense electrocatalytic efficiency to achieve the reaction of hydrogen evolving process, which provides a low overpotential of 98 mV at 10 mA cm−2. To further prove it, all-water-urea electrolysis measurement is carried out in 1 M KOH and 0.5 M Urea with NiFe-LDH/MWCNTs/NF as cathode and anode respectively. NiFe-LDH/MWCNTs/NF||NiFe-LDH/MWCNTs/NF electrode manages to provide 10 mA cm−2 at a voltage of merely 1.507 V, 156 mV lower than that of water splitting, which proves its commercial viability in energy-saving hydrogen production.  相似文献   

18.
Developing efficient bifunctional catalysts for hydrogen and oxygen evolution reactions (HER/OER) has attracted great interest in hydrogen production from water splitting. In this work, a novel material of Mo-doped NiFex nanospheres on 3D graphene fibers (Mo-NiFex/3DGFs) has been successfully fabricated through a simple and cheap one-step electrodeposition method. The Mo-NiFex/3DGFs possessed ultra-high conductivity and specific surface area, greatly benefiting to electrocatalytic hydrolysis activity. And it was found that Fe element could obviously promote OER process, while Mo doping facilitated both OER and HER reactions. We proved that there existed synergetic roles between Fe and Mo element, which could realize the control of the electronic structure and optimize the adsorption/desorption of intermediates. And electrochemical tests showed that the Mo–Ni/3DGFs exhibited a relatively smaller overpotential of 109.9 mV for HER, while the Mo-NiFex/3DGFs presented better OER performance with an overpotential of 240.8 mV at the current density of 100 mA cm-2 in 1.0 M KOH. Finally, a system for overall water splitting constructed by Mo–Ni/3DGFs||Mo–NiFe0.68/3DGFs electrodes has a low cell voltage of 1.52 V at 10 mA cm?2 and long-term stability, exceeding most of literature results. Our findings provide insight into possibilities for the simple synthesis of high-performance and cheap catalysts, and laid the foundation for the practical application of transition metal catalysts.  相似文献   

19.
Water splitting to produce hydrogen and oxygen is considered as a feasible solution to solve the current energy crisis. It is highly desirable to develop inexpensive and efficient electrocatalyst for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this paper, nanostructured Ni-Co-Sn alloys were electrodeposited on copper foil and the excellent electrocatalytic performances for both HER and OER in alkaline media were achieved. The optimized Ni-Co-Sn electrode shows a low onset overpotential of −18 mV and a small Tafel slope of 63 mV/dec for the HER, comparable to many state-of-the-art non-precious metal HER catalysts. For the OER, it produces an overpotential of 270 mV (1.50 V vs. RHE) at current density of 10 mA/cm2, which is better than that of the commercial Ir/C catalyst. In addition to high electrocatalytic activities, it exhibits good stability for both HER and OER. This is the first report that Ni-Co-Sn is served as a cost-effective and highly efficient bifunctional catalyst for water splitting and it will be of great practical value.  相似文献   

20.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号