首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of tungsten carbide as co-catalyst in the photocatalytic H2 production from ethanol aqueous solutions (25% v/v) is reported. The photocatalytic H2 production using WC/TiO2 systems, in which tungsten carbide NPs are dispersed onto TiO2, is compared with that of TiO2800 with morphological and structural characteristics similar to WC/TiO2 and with the hydrogen produced using commercial TiO2 P25 as reference. To this end, WxCy/TiO2, WC1-x/TiO2_US and WO3/TiO2 photocatalysts were prepared, characterized and tested. The preparation of WxCy/TiO2 was accomplished by using a sol-gel based method which was useful for preparing bulk tungsten carbides. The preparation of WC1-x/TiO2_US is reported by the first time using a sonication method from WC1-x and TiO2800. Materials were characterized using N2 physisorption, XRD, SEM-EDX, TEM-HRTEM, UV–vis RDS, XP and Raman spectroscopy. The presence of 2–3 nm NPs with different tungsten carbide crystalline phases (hexagonal WC and W2C and cubic WC1-x) was determined for WxCv/TiO2 photocatalyst, the solely presence of 2–5 nm cubic WC1-x NPs onto TiO2 was confirmed for WC1-x/TiO2_US.The presence of tungsten carbide NPs onto TiO2 improves the photocatalytic behavior of TiO2 in terms of hydrogen production. The effect of tungsten carbide NPs in the C2–C4 products derived from ethanol is discussed and the reusability of the photocatalyst is also studied.  相似文献   

2.
An effective improvement of hydrogen evolution from water splitting under solar light irradiation was investigated using quantum dots (QDs) compounds loaded onto a Au/TiO2 photocatalyst. First, Au/TiO2 was prepared by the deposition-precipitation method, and then sulfide QDs were loaded onto the as-prepared Au/TiO2 by a hydrothermal method. QDs were loaded onto Au/TiO2 to enhance the energy capture of visible light and near-infrared light of the solar spectrum. The results indicated that the as-prepared heterojunction photocatalysts absorbed the energy from the range of ultraviolet light to the near-infrared light region and effectively reduced the electron-hole pair recombination during the photocatalytic reaction. Using a hydrothermal temperature of 120 °C, the as-prepared (ZnS–PbS)/Au/TiO2 photocatalyst had a PbS QDs particle size of 5 nm, exhibited an energy gap of 0.92 eV, and demonstrated the best hydrogen production rate. Additionally, after adding 20 wt % methanol as a sacrificial reagent to photocatalyze for 5 h, the hydrogen production rate reached 5011 μmol g−1 h−1.  相似文献   

3.
Different amounts of Au NPs were deposited on a modified-TiO2 using the deposition-precipitation method with urea and used for hydrogen production via water splitting at room temperature and atmospheric pressure. Methanol and simultaneous UV and visible radiation were used as sacrificial reagent and excitation sources, respectively. Both modified-support and photocatalysts were characterized by XRD, HRTEM or STEM-HAADF, FE-SEM-EDS, N2 physisorption and UV–vis DRS. The emission spectra of the excitation sources were also obtained by spectrofluorometry. XRD, HRTEM and UV–vis DRS results showed that TiO2 anatase was the predominant crystalline phase, with a relative high specific surface area. STEM-HAADF and FE-SEM-EDS techniques revealed that the average Au NPs size was increased with Au loading from 3.2 to 14.9 nm and that the estimated Au contents were close to the expected theoretical values. On the other hand, the photo-generated hydrogen was significantly increased with Au NPs incorporation and it could be associated to a slightly decrease of the energy band gap and the intrinsic localized surface plasmon resonance that can suppress the high rate of electron-hole pair recombination. The photocatalytic performance also depended on multiples experimental factors, such as: stirring speed, amount and size of Au NPs, as well as the radiation source. The highest hydrogen production rate (2336 μmol-H2/gcat⋅h) was obtained using the Au/TiO2 photocatalyst with 0.5 wt% Au, a stirring speed of 800 rpm and purple lamp (13 W) simultaneously emitting UV (52%) and visible (48%) radiation.  相似文献   

4.
TiO2(B)/CdS/Au and TiO2(B)/Au/CdS heterostructures were synthesized to investigate the effect of the selected deposition of CdS and Au nanoparticles (NPs) on H2 generation. TiO2(B) spheres (phase B) consisted of nanosheets were synthesized via a hydrothermal reaction. The deposition of CdS and Au NPs were carried out using wet-chemical method and a reduction reaction, respectively. The size and amount of Au and CdS NPs were adjusted to optimize the resulting properties and discuss the change of band gap. Two kinds of heterogeneous revealed different photocatalytic hydrogen generation which indicated the position of Au NPs affect the transfer of photogenerated carriers. The hydrogen production rate of TiO2(B)/CdS/Au heterostructures reached up to 12100 μmol g−1 h−1, which is about 3.8 times of that of pure TiO2(B) spheres. This is ascribed to the structure of heterostructures. CdS NPs increase the separation of photogenerated electrons and Au NPs accelerated the transfer of the electrons. The result provided a utilizable strategy for efficient photocatalysis H2 generation.  相似文献   

5.
Cu/TiO2 was modified by adding Rh as co-catalyst and used as a highly efficient photocatalyst for the hydrogen evolution reaction. A low amount of Rh was loaded onto Cu/TiO2 by the deposition-precipitation with urea (DPU) method to observe the effect on the hydrogen production displayed by different samples. The Rh–Cu/TiO2 oxide structure exhibited a remarkably high photocatalytic hydrogen evolution performance, which was about twofold higher than that of the Cu/TiO2 monometallic photocatalyst. This outstanding performance was due to the efficient charge carrier transfer as well as to the delayed electron-hole recombination rate caused by the addition of Rh. The influence of the different parameters of the photocatalyst synthesis and reaction conditions on the photocatalytic activity was investigated in detail. Hydrogen evolution was studied using methanol, ethanol, 2-propanol and butanol as scavengers with an alcohol:water ratio of 20:80. The methanol-water system, which showed the highest hydrogen production, was studied under 254, 365 and 450 nm irradiation; Rh–Cu/TiO2 showed high photocatalytic activity with H2 production rates of 9260, 5500, and 1940 μmol h?1 g?1, respectively. The Cu–Rh/TiO2 photocatalyst was active under visible light irritation due to its strong light absorption in the visible region, low band gap value and ability to reduce the electron (e?) and hole (h+) recombination.  相似文献   

6.
Cheap and efficient photocatalysts were fabricated by simply mixing TiO2 nanoparticles (NPs) and CuO NPs. The two NPs combined with each other to form TiO2/CuO mixture in an aqueous solution due to the opposite surface charge. The TiO2/CuO mixture exhibited photocatalytic hydrogen production rate of up to 8.23 mmol h−1 g−1 under Xe lamp irradiation when the weight ratio of P25 to CuO was optimized to 10. Although the conduction band edge position of CuO NPs is more positive than normal hydrogen electrode, the TiO2/CuO mixture exhibited good photocatalytic hydrogen production performance because of the inter-particle charge transfer between the two NPs. The detailed mechanism of the photocatalytic hydrogen production is discussed. This mixing method does not require a complicated chemical process and allows mass production of the photocatalysts.  相似文献   

7.
Photo-induced reforming of methanol, ethanol, glycerol and phenol at room temperature for hydrogen production was investigated with the use of ultra-small Pt nanoparticles (NPs) loaded on TiO2 nanotubes (NTs). The Pt NPs with diameters between 1.1 and 1.3 nm were deposited on TiO2 NTs by DC-magnetron sputtering (DC-MS) technique. The photocatalytic hydrogen rate achieved an optimum value for a loading of about 1 wt% of Pt. Apparent quantum yield for hydrogen generation was measured for methanol and ethanol water solutions reaching a maximum of 16% under irradiation with a wavelength of 313 nm in methanol/water solution (1/8 v/v). Pt NPs loaded on TiO2 NTs represented also a true water splitting catalyst under UV irradiation and pure distilled water. DC-MS method appears to be a technologically simple, ecologically benign and potentially low-cost process for production of an efficient photocatalyst loaded with ultra-small NPs with precise size control.  相似文献   

8.
In terms of improving photocatalytic hydrogen production performance, inexpensive and earth-rich cocatalysts have become promising alternatives to precious metals. Herein, a novel CoNi–TiO2 photocatalyst composed of TiO2 nanoflowers and CoNi alloy was prepared by hydrothermal and chemical reduction methods. Various characterizations and test results have confirmed that the further improvement of the photocatalytic performance of the CoNi–TiO2 photocatalyst is mainly due to the fact that the bimetallic CoNi alloy can accelerate charge transfer and inhibit the recombination of photo-induced carriers. The hydrogen production rate of the prepared CoNi–TiO2 is about 24 times higher than that of the pristine TiO2, and its hydrogen production rate value can reach 6580.9 μmol g?1 h?1, and showing comparable photocatalytic performance to 0.5 wt% Pt–TiO2. In addition, combined with the characterization results, a probable mechanism for enhanced photocatalytic performance was proposed. This study provides favorable enlightenment for the design of a series of highly efficient non-precious metal TiO2-based photocatalysts.  相似文献   

9.
One key challenge in photocatalytic hydrogen production is how to construct high-performance photocatalyst. Covalent triazine framework (CTF) based polymers as photocatalysts show great application potential because of their good photocatalytic activity, high chemical stability, tunable electronic and optical properties, and easy synthesis process. In this paper, we designed the ternary Z-scheme heterojunction Au@TiO2-X%TrTh based on CTF polymer TrTh, TiO2 and Au nanoparticle, which exhibit higher photocatalytic hydrogen production rate compared with the corresponding binary heterojunction Au@TiO2 and TiO2-12%TrTh. The results of photocatalytic hydrogen production show that the optimized Au@TiO2-12%TrTh has a remarkable hydrogen production rate of 4288.54 μmol g?1 h?1, which is about 312.3 times of Au@TiO2 and 9.1 times of the TiO2-12%TrTh. The enhanced hydrogen production activity of the ternary heterojunction comes from the local surface plasmonic resonance effect of Au nanoparticle, lower recombination efficiency of photogenerated electron-holes pairs and Z-scheme electron transfer pathway of Au@TiO2-12%TrTh. The work provides a new strategy for designing efficient and practical photocatalyst.  相似文献   

10.
Photocatalytic hydrogen production from water or organic compounds is a promising way to resolve our energy crisis and environmental problems in the near future. Over the past decades, many photocatalysts have been developed for solar water splitting. However, most of these photocatalysts require cocatalyst to facilitate H2 evolution reaction and noble metals as key cocatalysts are widely used. Consequently, the condition of noble metal cocatalyst including the size and valence state etc plays the key role in such photocatalytic system. Here, the size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst were studied for the first time. Surprisingly, it was found that Pt particle size does not affect the photoreaction rate with the size range of several nanometers in this work, while it is mainly depended on the valence state of Pt particles. Typically, TOFs of TiO2 photodeposited with 0.1–0.2 wt% Pt can exceed 3000 h−1.  相似文献   

11.
Developing new renewable, carbon-neutral fuels to diminish the amount of released CO2 in the atmosphere and to solve global challenges such as global warming and climate change is significant. Among them, hydrogen (H2) is attracting much attention due to its high energy density, ease of transportation, and multiple means of production. To meet the global demand of H2, photocatalytic water splitting is one of the most promising methods for large scale production. Herein, Al-doped SrTiO3 photocatalyst (Al–SrTiO3) was prepared by a molten flux method. Then, plasmonic metal nanoparticles (Au, Cu, Pt), and cocatalysts Rh/Cr2O3 and CoOOH were selectively deposited onto the reductive and oxidative active sites of Al–SrTiO3 using multi-step photodeposition-impregnation methods for water splitting and H2 production under UV-rays, UV–Vis. Light, and visible light (λ ≥ 400 nm). Our results showed that, compared with Pt and Cu loaded Al–SrTiO3 photocatalyst supported with Rh/Cr2O3 and CoOOH cocatalysts, Au-loaded samples showed the highest H2 production efficiency under both UV (920 μmol/h - EQE = 41% at 365 nm) and UV–Vis (100.5 μmol/h) rays. In addition, the amount of evolved H2 decreased by increasing the weight ratio of Au nanoparticles (NPs) due to the overlap between Au NPs and Rh/Cr2O3 cocatalyst. Although Au 0.3 wt%-loaded sample showed high activity under both UV and UV–Vis. Rays, it exhibited almost no efficiency under visible light because of the large bandgap of Al–SrTiO3 (3.1 eV) and the poor absorption in the visible region. Visible light absorption was then enhanced by increasing the loaded amount of Au NPs and by separating Au NPs and Rh/Cr2O3 cocatalyst responsible for H2 evolution by combining both photodeposition and impregnation methods. Under visible light, Rh/Cr2O3-loaded Al–SrTiO3 with 4 wt % Au NPs showed the highest H2 evolution efficiency (41 μmol/3 h). This was attributed to the efficient hot electron transfer from Au NPs to Al–SrTiO3 then to RhCr2O3, resulting in charge separation needed for efficient H2 generation.  相似文献   

12.
Deposition of Pt NPs with preferred dispersion and morphologies on TiO2 have been the focus of studies in photocatalytic and photoelectrochemical hydrogen production. Green synthesis of TiO2/Pt NPs nanocomposites with narrow size distribution of Pt NPs still remain a challenge. Herein, we report that sucrose is highly efficient for the preparation of well-dispersed TiO2/Pt NPs photocatalysts. Moreover, the sucrose could act as an electron donor, showing higher hydrogen production activity under simulated sunlight than pure water. The as-synthesized photocatalysts have been characterized by techniques of transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX), and diffuse reflectance spectroscopy (DRS). Compared with TiO2/Pt NPs photocatalysts prepared through conventional photodeposition, the photocatalysts as prepared showed higher photocatalytic efficiency. Moreover, the catalyst could be reused easily without apparent degradation of their original photocatalytic activities. This approach presents a promising and low-cost strategy to improve the photocatalytic performance of TiO2 from biomass.  相似文献   

13.
This study focused on the large band gap of TiO2 for its use as a photocatalyst under light emitting diode (LED) light irradiation. The photocatalytic activities of core–shell structured Au@TiO2 nanoparticles (NPs), nitrogen doped Au@TiO2 NPs, and Au@TiO2/rGO nanocomposites (NCs) were investigated under various light intensities and sacrificial reagents. All the materials showed better photocatalytic activity under white LED light irradiation than under blue LED light. The N-doped core–shell structured Au@TiO2 NPs (Au@N–TiO2) and Au@TiO2/rGO NCs showed enhanced photocatalytic activity with an average H2 evolution rate of 9205 μmol h?1g?1 and 9815 μmol h?1g?1, respectively. All these materials showed an increasing rate of hydrogen evolution with increasing light intensity and catalyst loading. In addition, methanol was more suitable as a sacrificial reagent than lactic acid. The rate of hydrogen evolution increased with increasing methanol concentration up to 25% in DI water and decreased at higher concentrations. Overall, Au@TiO2 core–shell-based nanocomposites can be used as an improved photocatalyst in photocatalytic hydrogen production.  相似文献   

14.
Free-standing carbon nanotube films (CNTF) with entangled carbon nanotubes (CNT) were used as conductive supports for the preparation of CuS–ZnS/CNTF composite as immobilized photocatalysts for H2 production. The surface morphology, crystalline property, surface chemistry, and optical properties of the CuS–ZnS/CNTF photocatalysts were investigated. The effects of forming CuS–ZnS heterojunction and conductive CNTF on the separation of photogenerated charges and photocatalytic hydrogen production activity of CuS–ZnS/CNTF photocatalysts were evaluated by the photocatalytic hydrogen production tests. Conductive CNT films can prevent the recombination of photogenerated electron–hole pairs. The deposition of CuS nanoparticles on the ZnS/CNTF leads to higher photocatalytic activity which can be attributed to the effective electron–hole separation. Introducing ZnS and CuS makes the photocatalyst surface more hydrophilic. The porous structure contributed to the effective contact between the sacrificing agents and the photocatalysts, leading to enhanced H2 production activity.  相似文献   

15.
The photocatalytic hydrogen production from aqueous methanol solution was investigated with ZnO/TiO2, SnO/TiO2, CuO/TiO2, Al2O3/TiO2 and CuO/Al2O3/TiO2 nanocomposites. A mechanical mixing method, followed by the solid-state reaction at elevated temperature, was used for the preparation of nanocomposite photocatalyst. Among these nanocomposite photocatalysts, the maximal photocatalytic hydrogen production was observed with CuO/Al2O3/TiO2 nanocomposites. A variety of components of CuO/Al2O3/TiO2 photocatalysts were tested for the enhancement of H2 formation. The optimal component was 0.2 wt% CuO/0.3 wt% Al2O3/TiO2. The activity exhibited approximately tenfold enhancement at the optimum loading, compared with that with pure P-25 TiO2. Nano-sized TiO2 photocatalytic hydrogen technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy.  相似文献   

16.
A TiO2 nanotube-based nanoreactor was designed and fabricated by facile two steps synthesis: firstly, hydrothermal synthesized SrTiO3 was deposited on TiO2 nanotubes (TiO2NTs). Secondly, the Au nanoparticles (NPs) were encapsulated inside the TiO2NTs followed by vacuum-assisted impregnation. The as-synthesized composites were characterized using Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Photoluminescence spectra (PL) and Ultraviolet–visible absorption spectroscopy (UV–vis). The photocatalytic performance was evaluated by the hydrogen evolution reaction. The results revealed that the SrTiO3 modified TiO2NTs confined Au NPs (STO-TiO2NTs@Au) achieved an enhanced hydrogen evolution rate at 7200 μmol h−1 g−1, which was 2.2 times higher than that of bald TiO2NTs@Au at 3300 μmol h−1 g−1. The improved photocatalytic activity could be attributed to the synergistic effect of the electron-donating of SrTiO3 and TiO2NTs confinement. The as-designed nanoreactor structure provides an example of efficient carriers' separation photocatalyst.  相似文献   

17.
Sensitized photocatalytic production of hydrogen from water splitting is investigated under visible light irradiation over mesoporous-assembled titanium dioxide (TiO2) nanocrystal photocatalysts, without and with Pt loading. The photocatalysts are synthesized by a sol–gel process with the aid of a structure-directing surfactant and are characterized by N2 adsorption–desorption analysis, X-ray diffraction, UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray analysis. The dependence of hydrogen production on the type of TiO2 photocatalyst (synthesized mesoporous-assembled and commercial non-mesoporous-assembled TiO2 without and with Pt loading), the calcination temperature of the synthesized photocatalyst, the sensitizer (Eosin Y) concentration, the electron donor (diethanolamine) concentration, the photocatalyst dosage and the initial solution pH is systematically studied. The results show that in the presence of the Eosin Y sensitizer, the Pt-loaded mesoporous-assembled TiO2 synthesized by a single-step sol–gel process and calcined at 500 °C exhibits the highest photocatalytic activity for hydrogen production from a 30 vol.% diethanolamine aqueous solution with dissolved 2 mM Eosin Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the maximum photocatalytic activity for hydrogen production are 3.33 g dm−3 and 11.5, respectively.  相似文献   

18.
Hydrogen production from the photocatalytic water splitting reaction is very attractive because it is an environmentally friendly process, where hydrogen is produced from two abundantly renewable sources, i.e. water and solar energy, with the aid of photocatalysts. TiO2 is the most widely investigated photocatalyst; however, it alone still exhibits low performance to photocatalytically produce hydrogen. Hence, the aim of this work focused on the enhanced photocatalytic hydrogen production over Ag-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts under UV light irradiation. The TiO2-ZrO2 mixed oxides with various TiO2-to-ZrO2 molar ratios were synthesized by a sol-gel process with the aid of a structure-directing surfactant, followed by Ag loading via a photochemical deposition method. The influences of photocatalyst preparation parameters, i.e. calcination temperature, phase composition, and Ag loading, were studied. The results revealed that the mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalyst with a TiO2-to-ZrO2 molar ratio of 93:7 calcined at 500 °C exhibited the highest photocatalytic hydrogen production activity, and the Ag loading of 0.5 wt.% further greatly enhanced the photocatalytic activity of such TiO2-ZrO2 mixed oxide photocatalyst.  相似文献   

19.
Photocatalysis is an effective way to utilize solar energy to produce hydrogen from water. Au/TiO2 nanoparticles (NPs) have a better performance in photocatalytic hydrogen generation because of the localized surface plasmon resonance (LSPR) effect of Au/TiO2 NPs. In the photocatalytic hydrogen generation experiments, it was found that light intensity plays a key role in the photocatalytic reaction rate of Au/TiO2 NPs. At a light intensity of 0–7 kW/m2, the reaction rate has a super-linear law dependence on the light intensity (Rate ∝ Intensityn, with n > 1). However, at a light intensity of 7–9 kW/m2, the dependency becomes sub-linear (n < 1). This means that the increase rate of photocatalytic rate is smaller than that of light intensity when the light intensity exceeds 7 kW/m2. In addition, the finite element method (FEM) was utilized to further elucidate the role of light intensity by calculating the absorption power and nearfield intensity mapping of a Au/TiO2 nanoparticle. The variation trend of the calculated total absorption power agrees with the photocatalytic experimental results for different light intensities. These results shed light on the utilization of concentrated solar photocatalysis to increase the solar-to-hydrogen performance of Au/TiO2 NPs.  相似文献   

20.
Photocatalytic hydrogen production under the visible spectrum of solar light is an important topic of research. To achieve the targeted visible light hydrogen production and improve the charge carrier utilization, bandgap engineering and surface modification of the photocatalyst plays a vital role. Present work reports the one-pot synthesis of Cu–TiO2/CuO nanocomposite photocatalyst using green surfactant -aided -ultrasonication method. The materials characterization data reveals the TiO2 particle size of 20–25 nm and the existence of copper in the lattice as well as in the surface of anatase TiO2. This is expected to facilitate better optical and surface properties. The optimized photocatalyst shows enhanced H2 production rate of 10,453 μmol h−1 g−1 of the catalyst which is 21 fold higher than pure TiO2 nanoparticles. The photocatalyst was tested for degradation of methylene blue dye (90% in 4 h) in aqueous solution and photocatalytic reduction of toxic Cr6+ ions (55% in 4 h) in aqueous solution. A plausible mechanistic pathway is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号