首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays the biggest challenge for most organizations is a real and substantial application of sustainability through the measurement and comparability of results in order to satisfy the principles of sustainability of all the stakeholders. Definitively, it is necessary to pursue sustainability through the measurements of specific indicators and control the variables that influence the state of the economic, social and environmental issues. The aim of this paper is to contribute to the development of a comprehensive, yet practical and reliable tool for a systematic sustainability assessment, based on the Life Cycle Assessment (LCA) and the Analytic Hierarchy Process (AHP) to support decision makers in complex decision problems in the field of environmental sustainability. The results are applied to a novel compressed air energy storage system proposed as a suitable technology for the energy storage in a small scale stand-alone renewable energy power plant (photovoltaic power plant) that is designed to satisfy the energy demand of a radio base station for mobile telecommunications. The outcome is a dynamic analysis and iterative integrated sustainability assessment of corporate performance.  相似文献   

2.
Dynamic life cycle assessment (LCA) of renewable energy technologies   总被引:2,自引:0,他引:2  
Martin   《Renewable Energy》2006,31(1):55-71
Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are ‘imported’ into the system due to the ‘background system’ (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies.Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to ‘external’ services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation.The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent.  相似文献   

3.
The renewable energy sources are often presented as ‘clean’ sources, not considering the environmental impacts related to their manufacture. The production of the renewable plants, like every production process, entails a consumption of energy and raw materials as well as the release of pollutants. Furthermore, the impacts related to some life cycle phases (as maintenance or installation) are sometimes neglected or not adequately investigated.The energy and the environmental performances of one of the most common renewable technologies have been studied: the solar thermal collector for sanitary warm water demand. A life cycle assessment (LCA) has been performed following the international standards of series ISO 14040. The aim is to trace the product's eco-profile that synthesises the main energy and environmental impacts related to the whole product's life cycle. The following phases have been investigated: production and deliver of energy and raw materials, production process, installation, maintenance, disposal and transports occurring during each step. The analysis is carried out on the basis of data directly collected in an Italian factory.  相似文献   

4.
The UK electricity mix will change significantly in the future. This provides an opportunity to consider the full life cycle sustainability of the options currently considered as most suitable for the UK: gas, nuclear, offshore wind and photovoltaics (PV). In an attempt to identify the most sustainable options and inform policy, this paper applies a sustainability assessment framework developed previously by the authors to compare these electricity options. To put discussion in context, coal is also considered as a significant contributor to the current electricity supply. Each option is assessed and compared in terms of its economic, environmental and social implications, using a range of sustainability indicators. The results show that no one technology is superior and that certain trade‐offs must be made. For example, nuclear and offshore wind power have the lowest life cycle environmental impacts, except for freshwater ecotoxicity for which gas is the best option; coal and gas are the cheapest options (£74 and 66/MWh, respectively, at 10% discount), but both have high global warming potential (1072 and 379 g CO2 eq./kWh); PV has relatively low global warming potential (88 g CO2 eq./kWh) but high cost (£302/MWh), as well as high ozone layer and resource depletion. Nuclear, wind and PV increase some aspects of energy security: in the case of nuclear, this is due to inherent fuel storage capabilities (energy density 290 million times that of natural gas), whereas wind and PV decrease fossil fuel import requirements by up to 0.2 toe/MWh. However, all three options require additional installed capacity for grid management. Nuclear also poses complex risk and intergenerational questions such as the creation of 10.16 m3/TWh of nuclear waste for long‐term geological storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
At present, pumped hydro energy storage plays the dominant role in electrical energy storage. However, its development is clearly restricted by the topography and adverse impacts on local residents. Underground pumped hydro energy storage (UPHES) using abandoned mine pits not only can effectively remedy these drawbacks but is also constructive to the management of abandoned mine pits. In this paper, we firstly conduct a comprehensive analysis of conventional pumped hydro energy storage (CPHES) and UPHES, using life cycle sustainability assessment (LCSA). Sustainability indicators in this paper include economic indicators, environmental indicators, and social indicators. Among all the indicators, blue water footprint (BWF) and ecological footprint (EF) are included for the first time to assess the social performance of CPHES and UPHES. Then, this paper employs multi-attribute value theory (MAVT) and scenario analysis to evaluate the overall performance of energy storages. The results show that CPHES has better performance in economy and environment than UPHES because of the economies of scale, while the UPHES has better performance in social sustainability impact because of the absence of stages of excavation and backfilling. When using MAVT methodology, only when the weight for social indicator is three times higher than that of economy and environment; ie, the weight for social dimension is 0.6, and the weights for environmental and social dimension are 0.2; the score of UPHES is higher than CPHES.  相似文献   

6.
Starting from the results of a life cycle assessment of solar thermal collector for sanitary warm water, an energy balance between the employed energy during the collector life cycle and the energy saved thanks to the collector use has been investigated. A sensitivity analysis for estimating the effects of the chosen methods and data on the outcome of the study was carried out. Uncertainties due to the eco-profile of input materials and the initial assumptions have been analysed.Since the study is concerned with a renewable energy system, attention has been focused on the energy indexes and in particular the “global energy consumption”. Following the principles of Kyoto Protocol, the variations of CO2 emissions have also been studied.  相似文献   

7.
A strategic analysis methodology is presented for adaptive energy systems engineering to realize an optimal level of service in the context of a community's social, economic, and environmental position. The groundwork stage involves characterizing the social context, assessing available energy resources, identifying environmental issues, setting eco-resource limits, and quantifying socio-economic constraints for a given region. A spectrum of development options is then constructed according to the range of energy service levels identified for the sector under study. A spectrum of conceptual energy systems is generated and infrastructure investments and resource use are modeled. The outcome is a matrix of energy system investment possibilities for the range of energy demand levels reflecting the values, ideas, and expectations expressed by the community. These models are then used to assess technical feasibility and economic, environmental and social risk. The result is an easily understood graphical depiction of local aspirations, investment options, and risks which clearly differentiates development opportunities from non-viable concepts. The approach was applied to a case study on Rotuma, an isolated Pacific Island. The case study results show a clear development opportunity space for Rotuma where desired energy services are in balance with investment sources, resource availability, and environmental constraints.  相似文献   

8.
This study aimed to identify the environmental and economic aspects of the wind-hydrogen system using life cycle assessment (LCA) and life cycle costing (LCC) methodologies. The target H2 pathways are the H2 pathway of water electrolysis (WE) with wind power (WE[Wind]) and the H2 pathway of WE by Korean electricity mix (WE[KEM]). Conventional fuels (gasoline and diesel) are also included as target fuel pathways to identify the fuel pathways with economic and environmental advantages over conventional fuels. The key environmental issues in the transportation sector are analyzed in terms of fossil fuel consumption (FFC), regulated air pollutants (RAPs), abiotic resource depletion (ARD), and global warming (GW). The life cycle costs of the target fuel pathways consist of the well-to-tank (WTT) costs and the tank-to-wheel (TTW) costs. Moreover, two scenarios are analyzed to predict potential economic and environmental improvements offered by wind energy-powered hydrogen stations.  相似文献   

9.
Energy systems for the building sector nowadays are moving towards using renewable energy sources such as solar and wind power. However, it is nearly impossible to fully develop a multi-generation energy system for a building only relying on these sources without convenient energy storage, backup systems, or connection to the grid. In this work, using TRNSYS software, a model was developed to study the transient behavior of an energy system applicable for residential buildings to supply the heating, cooling, domestic hot water, and electricity in demand. This study contains the comparison of two methods of energy storage, a hydrogen fuel cell/electrolyzer package and a conventional battery system. This study also provides information on environmental impacts and economical aspects of the proposed system. The results show that for an HVAC system when using hydrogen storage system the capital cost is twice the cost of using a battery system. However, the hydrogen system shows better performance when used at higher loads. Hydrogen storage systems show higher performance when used at higher size units.  相似文献   

10.
Mirko Bravi  Riccardo Basosi 《Energy》2011,36(7):4297-4306
In this paper the results from a in-depth life cycle analysis of production and use of a novel grid-connected photovoltaic micromorph system are presented and compared to other thin film and traditional crystalline silicon photovoltaic technologies. Among the new thin film technologies, the micromorph tandem junction appears to be one of the most promising devices from the industrial point of view. The analysis was based on actual production data given to the authors directly from the PRAMAC Swiss Company and it is consistent with the recommendations provided by the ISO norms and updates. The gross energy requirement, green house gas emissions and energy pay-back time have been calculated for the electric energy output virtually generated by the studied system in a lifetime period of 20 years. A comparative framework is also provided, wherein results obtained for the case study are compared with data from literature previously obtained for the best commercially available competing photovoltaic technologies. Results clearly show a significant decrease in gross energy requirement, in green house gas emissions and also a shorter energy pay-back time for the micromorph technology.  相似文献   

11.
Life cycle assessment of biohydrogen production in photosynthetic processes   总被引:1,自引:0,他引:1  
The outcomes of biohydrogen from photosynthesis processes are still small, however different development methods and laboratory studies are carried out to increase the production yield and meanwhile optimize the process to lessen the negative impact on the environment and climate change. The Life Cycle Assessment (LCA) gives the possibility to compare different biohydrogen production approaches using different photosynthesis methods and, at the same time, identify the environmental “hot spots” of the whole process.Inventory analysis and the results of different researchers in this field allow to find values of selected ecoindicators in order to evaluate the biohydrogen production efficiency with the selection of the best initial data for life cycle analysis. These ecoindicators weigh the resources needed for biohydrogen production whole system.This paper presents the first aspects for the implementation of a life cycle assessment.  相似文献   

12.
Waste disposal represents an important aspect of the policies of politics of developed countries. It is well known that waste management entails several social, economical and environmental aspects. Many different technical solutions have been proposed and evaluated, more or less complicated, from a social and economic point of view, but the environmental burden linked to these solutions still remains an open problem not definitively resolved yet. One of the most promising ways for investigating and comparing the environmental consequences connected to different human activities seems to be represented by the LCA analysis. In this work the LCA analysis of a micro‐pyrolysis with micro‐gas turbine waste to energy plant, has been performed with the aid of a commercial simulation code. The scenario is analysed with regard to a small, isolated, Italian town. A comparison between the current and proposed case has also been carried out. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Renewable energy systems (RESs) have been promoted for rural electrification as an answer to the growing energy needs of communities while simultaneously satisfying environmental and resource scarcity problems. These off-grid systems however have several challenges in the perspective of sustainability due to the technically and financially weak recipients and users of the projects. There is still, however, less detailed understanding how the technical and economic aspects of the projects can properly match the social aspects to promote sustainability. This paper aimed to further understand the challenges and social impacts of rural electrification projects using RES through a case study of a centralized off-grid solar plant in the Philippines. The study used multiple correspondence analysis (MCA) to identify essential user attributes which explain the users’ electricity consumption behaviors. The community cooperative had difficulties maintaining the facility in the long term due to financial and capacity related challenges. A holistic approach dealing with the technical, economic and social aspects in developing RES projects promote sustainability.  相似文献   

14.
S.K. Singal  Varun  R.P. Singh 《Renewable Energy》2007,32(15):2491-2501
India has a large number of remote small villages and islands that lack in the electricity, and probability of connecting them with the high voltage gridlines in the near future is very poor due to financial and technical constraints. The main electrical load in these villages is domestic. In this paper a study has been presented for sustainable development of renewable energy sources to fulfill the energy demands of a remote island having a cluster of five villages. The total potential of electricity from these resources is estimated to be equivalent to 3530 kWh/day whereas demand is only 2310 kWh/day with an installed capacity of 450 kW, which is sufficient to replace the existing power generation system dominated by diesel operated system.  相似文献   

15.
The conversion of wood to synthetic natural gas (SNG) via gasification and catalytic methanation is a renewable close to commercialization technology that could substitute fossil fuels and alleviate global warming. In order to assure that it is beneficial from the environmental perspective, a cradle to grave life cycle assessment (LCA) of SNG from a first-of-its-kind polygeneration unit for heating, electricity generation, and transportation was conducted. These SNG systems were compared to fossil and conventional wood reference systems and environmental benefits from their substitution evaluated. Finally, we conduct sensitivity analysis for expected technological improvements and factors that could decrease environmental performance.It is shown that substituting fossil technologies with SNG systems is environmentally beneficial with regard to global warming and for selected technologies also with regard to aggregated environmental impacts. On the condition that process heat is used efficiently, technological improvements such as increased efficiency and denitrification could further increase this advantage. On the other hand, lower GHG emissions and aggregated impacts are partly compensated by other environmental effects, e.g. eutrophication, ecotoxicity, and respiratory disease caused by inorganics. Since more efficient alternatives exist for the generation of heat and electricity from wood, it is argued that SNG is best used for transportation. In the light of a growing demand for renewable transportation fuels and commercial scale technological development being only in its initial stage, the production of SNG from wood seems to be a promising technology for the near future.  相似文献   

16.
A dynamic model for a stand-alone renewable energy system with hydrogen storage (RESHS) is developed. In this system, surplus energy available from a photovoltaic array and a wind turbine generator is stored in the form of hydrogen, produced via an electrolyzer. When the energy production from the wind turbine and the photovoltaic array is not enough to meet the load demand, the stored hydrogen can then be converted by a fuel cell to produce electricity. In this system, batteries are used as energy buffers or for short time storage. To study the behavior of such a system, a complete model is developed by integrating individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries (used as an energy buffer). The sub-models are valid for transient and steady state analysis as a function of voltage, current, and temperature. A comparison between experimental measurements and simulation results is given. The model is useful for building effective algorithms for the management, control and optimization of stand-alone RESHSs.  相似文献   

17.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

18.
There is an urgent need to provide cost-effective, clean, distributed electricity to ensure reliability for mobile network operators in Sub-Saharan Africa. A comprehensive semi-empirical MATLAB/Simulink model of a novel low-pressure, solid-hydrogen based energy storage system combined with Solar PV and battery energy storage including dynamic losses of the power conditioning equipment is built. Levenburg-Marquardt least square algorithm is used for semi-empirical parameterisation of the metal-hydride and fuel cell models, simulations are performed using experimentally obtained telecom tower load data. The results show the overall system efficiency of the energy system drop from 21.05% for a Solar/Battery system to 17.43% of the most cost-effective hybridised system, which consists of 16.2 kW Solar PV coupled to a 10kW/40 kWh Li-Ion battery, and a Regenerative Hydrogen Fuel Cell (consisting of a 10 kW PEM Electrolyser, 1,000 kWh Ti-based AB2 Solid-Hydrogen Storage Cell, and 5 kW PEM Fuel Cell). This system achieves a Levelised Cost of Electricity of 17.16 ¢/kWh compared to 73.40 ¢/kWh for a Diesel Genset, with a Net Present Value of $109,236 and an Internal Rate of Return of 15.15%.  相似文献   

19.
Decomposition of ammonia derived from source-separated human urine is a renewable approach for hydrogen production. Life cycle net energy analysis and global warming impact of scaled-up hydrogen production via this technique are studied in this paper. Ammonia decomposition processes, including fixed-bed reactors with Ru/Al2O3 and Ni/Al2O3 as catalyst options are simulated using the Aspen Plus software, and the results are compared with published data for validation. The life cycle net energy indicators are assessed for three scenarios of ammonia generation: conventional air stripping, microbial fuel cell, and electrochemical cell methods at a unit basis of 1000 kg of H2 production. Results show that the microbial fuel cell process is more energy-efficient and emits lower greenhouse gases. The net energy ratio of the microbial fuel cell method is 1.38, and 1.12, for Ru/Al2O3 and Ni/Al2O3, respectively. A comparative assessment of ammonia generation and decomposition options for environmentally-benign hydrogen production is discussed.  相似文献   

20.
The current energy trend indicates a strong thrust toward transforming renewable energy as a major power source.To achieve this mission,battery energy storage systems (BESSs) are indispensable.Although BESSs are expensive,cost reduction can be achieved by using BESSs for multiple purposes,such as load leveling,business continuity planning,frequency control,capacity market,arbitrage,and emergency power.In this paper,various applications of BESSs are classified.The possibility of achieving conflic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号