首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This study investigates enhancing the biogas production of sunnhemp by pretreatment, before the anaerobic digestion and co-digestion processes, to address the complex and recalcitrant structure of the plant. Fresh sunnhemp harvested at a cutting interval of 50 days is used in the study. Five systems (each with a 5 litre useable volume) are operated semi-continuously with five different ratios of the feedstock by feeding separate feedstocks every five days with a hydraulic retention time (HRT) of 40 days. The system operates at room temperature (30 °C). The study uses sunnhemp as 20% of the feedstock and also considers sunnhemp mixed with cow manure at different ratios, with the weighed sunnhemp being pretreated with dilute sodium hydroxide. Pretreatment of sunnhemp before digestion produces a methane (CH4) yield 89% greater than that of the untreated sunnhemp. It requires 3.597 kg of dry sunnhemp to produce 1 m3 of CH4 and the annual CH4 yield per hectare is 19,015 m3. In the pretreatment of sunnhemp before co-digestion, the increased CH4 yield depends on the amount of pretreated sunnhemp in the feedstocks. However, the %CH4, the CH4 production level and the system stability depend on the optimal ratio of the sunnhemp to cow manure. The initially prepared sunnhemp to cow manure ratio is recommended at 10 g:10 g in 80 mL of water. At this ratio, the %CH4 and the CH4 yield are 53.84% and 313 kg chemical oxygen demand (COD) removed, respectively, and the COD removal efficiency is 56.4%. Sunnhemp has high potential and it is worth pretreating before producing biogas. Using sunnhemp to produce biogas is recommended to decrease greenhouse gas emissions and mitigate global warming.  相似文献   

2.
Buffalo grass and alkaline-pretreated buffalo grass samples were co-digested with cow manure separately to generate biogas in anaerobic reactors. The study considered a solid content of 20% (10% buffalo grass and 10% cow manure). The methane (CH4) content and CH4 yield of the distinct experiments were compared. For the untreated buffalo grass, the weighed buffalo grass was mixed with cow manure and water. For the alkaline-pretreated buffalo grass, the weighed buffalo grass was soaked in 1% sodium hydroxide for 1 day prior to being mixed with cow manure and water. The untreated and pretreated buffalo grass-manure were fed semi-continuously at the rate of 125 mL/day for five days feeding in a 5 L reactor, with 40 days hydraulic retention time. The experiments were conducted for approximately 100 days. Results were reported when the systems were in steady-state conditions. The chemical oxygen demand (COD) conversion efficiency of co-digestion of the untreated and pretreated buffalo grass-manure were 46.21 and 62.76%, respectively, and for the total volatile solids (TVS) were 68.50 and 71.80%, respectively. The CH4 contents generated from co-digestion of the untreated and pretreated buffalo grass-manure were 48.32% and 50.36%, respectively. The CH4 yields generated from co-digestion of the untreated and pretreated buffalo grass-manure were 328 and 385 L/kgTVS conversion, respectively. It was observed from the experiments that pretreatment of the buffalo grass prior to co-digestion provided system stability during biogas production.  相似文献   

3.
In this study, a two-stage fermentation system to produce H2 and CH4 from Laminaria japonica was developed. In the first stage (dark fermentative H2 production, DFHP), response surface methodology (RSM) with a Box-Behnken design (BBD) was applied for optimization of operational parameters, including cycle-frequency, HRT, and substrate concentration, using an intermittent-continuously stirred tank reactor (i-CSTR). Overall performance revealed that the degree of importance of the three variables in terms of H2 yield is as follows: cycle-frequency > substrate concentration > HRT. In the confirmation test, H2 yield of 113.1 mL H2/g dry cell weight (dcw) was recorded, corresponding with 96.3% of the predicted response value under desirable operational conditions (cycle-frequency of 17 hr, HRT of 2.7 days, and substrate concentration of 31.1 g COD/L). In the second stage, an anaerobic sequencing batch reactor (ASBR) and an up-flow anaerobic sludge blanket reactor (UASBr) were employed for CH4 production from H2 fermented solid state (HFSS) and H2 fermented liquid state (HFLS), respectively. The CH4 producing ASBR and UASBr showed a stable CH4 yield and COD removal until a HRT of 12 days and OLR of 3.5 g COD/L/d, respectively. Subsequently, for recycling of CH4 fermented effluent from the UASBr (MFEUASBr) as diluting water in DFHP, the tap water and MFEUASBr mixing ratio (T/M ratio) was optimized (a T/M ratio of 5:5) in a batch test using heat pretreated MFEUASBr at 90 °C for 20 min, resulting in the best performance. Although slight decreases of H2 yield (7.6%) and H2 production rate (3.5%) were recorded, 100% reduction of alkali addition was possible, indicating potential to maximize economic benefits. However, a drastic decrease of H2 productivity and a change of liquid-state metabolites were observed with the use of non-heat pretreated MFEUASBr. These results coincided with those of the microbial analysis, where non-H2 producing bacteria, such as Selenomonas sp., were detected. The results indicate that pretreatment of MFEUASBr may be required in order to recycle it in DFHP.  相似文献   

4.
The present work aimed at establishing an efficient degradation and energy recovery system form sugarcane bagasse (SCB) through hydrogen peroxide-acetic acid (HPAC) pretreatment, thermophilic hydrogen production and mesophilic methane production. The degradation ratio of HPAC pretreated SCB (HPAC-SCB, 2%, w/v) exceeded 90% under the biological hydrolysis of C. thermocellum without enzyme addition. The hydrogen yield in the co-culture fermentation of T. thermosaccharolyticum and C. thermocellum from HPAC-SCB (2%, w/v) reached 226 mL/g substrate. The long-term hydrogen fermentation was successfully established with 1.59 L/(L·d), 0.159 L/g substrate for average hydrogen productivity and yield, respectively. Methane production of 0.341 L/g COD (chemical oxygen demand)added was recovered by semi-continuous methane fermentation from hydrogen-producing effluent at 12 days of hydraulic retention time (HRT). Average energy recovery of 8.79 MJ/kg SCB was obtained under the optimal conditions. The present work indicated the promising application of the established process in valorization of lignocellulosic bio-waste.  相似文献   

5.
Sewage sludge from a municipal wastewater treatment plant was fed into a microbial electrochemical system, combined with an anaerobic digester (MES-AD), for enhanced methane production and sludge stabilization. The effect of thermally pretreating the sewage sludge on MES-AD performance was investigated. These results were compared to those obtained from control operations, in which the sludge was not pretreated or MES integration was absent. The soluble chemical oxygen demand (SCOD) in the raw sewage sludge after pretreatment was 31% higher than the SCOD in untreated sludge (5804.85 mg/L vs. 4441.46 mg/mL). The methane yield and proportion of methane in biogas generated by the MES-AD were higher than those of the control systems, regardless of the pretreatment process. The maximum methane yield (0.28 L CH4/g COD) and methane production (1139 mL) were obtained with the MES inoculated with pretreated sewage sludge. Methane yield and production with this system using pretreated sewage were 47% and 56% higher, respectively, than those of the control (0.19 L CH4/g COD, 730 mL). Additionally, the maximum SCOD removal (89%) and current generation were obtained with the MES inoculated with a pretreated substrate. These results suggested that sewage sludge could be efficiently stabilized with enhanced methane production by synergistic combination of MES-AD system with pretreatment process.  相似文献   

6.
This study evaluated the feasibility of H2 and CH4 production in two-stage thermophilic (55 °C) anaerobic digestion of sugarcane stillage (5,000 to 10,000 mg COD.L−1) using an acidogenic anaerobic fluidized bed reactor (AFBR-A) with a hydraulic retention time (HRT) of 4 h and a methanogenic AFBR (AFBR-S) with HRTs of 24 h–10 h. To compare two-stage digestion with single-stage digestion, a third methanogenic reactor (AFBR-M) with a HRT of 24 h was fed with increasing stillage concentrations (5,000 to 10,000 mg COD.L−1). The AFBR-M produced a methane content of 68.4 ± 7.2%, a maximum yield of 0.30 ± 0.04 L CH4.g COD−1, a production rate of 3.78 ± 0.40 L CH4.day−1.L−1 and a COD removal of 73.2 ± 5.0% at an organic loading rate (OLR) of 7.5 kg COD.m−3.day−1. In contrast, the two-stage AFBR-A system produced a hydrogen content of 23.9 ± 5.6%, a production rate of 1.30 ± 0.16 L H2.day−1.L−1 and a yield of 0.34 ± 0.08 mmol H2.g CODap−1. Additionally, the decrease in the HRT from 18 h to 10 h in the AFBR-S favored a higher methane production, improving the maximum methane content (74.5 ± 6.0%), production rate (5.57 ± 0.38 L CH4.day−1.L−1) and yield (0.26 ± 0.06 L CH4.g COD−1) at an OLR of 21.6 kg COD.m−3.day−1 (HRT of 10 h) with a total COD removal of 70.1 ± 7.1%. Under the applied COD of 10,000 mg L−1, the two-stage system showed a 52.8% higher energy yield than the single-stage anaerobic digestion system. These results show that, relative to a single-stage system, two-stage anaerobic digestion systems produce more hydrogen and methane while achieving similar treatment efficiencies.  相似文献   

7.
In this study, the feasibility of a continuous two-stage up-flow anaerobic sludge blanket (UASB) reactor system, consisted of thermophilic (55 °C) dark fermentative H2 production and mesophilic (35 °C) CH4 production from coffee drink manufacturing wastewater (CDMW), was tested. A recently proposed operational strategy was used to overcome a major drawback of the long start-up period of the UASB reactor. Firstly, a completely stirred tank reactor (CSTR) was operated for 8 days to prepare seeding. The seed was then directly transferred to the UASB reactor. Microbial aggregation took place in the initial period, and the floc size was gradually increased over time. In UASB reactor, the maximum H2 yield of 2.57 mol H2/mol hexoseadded and a stable H2 production rate of 4.24 L H2/L/h were observed at a hydraulic retention time (HRT) of 6 h and substrate concentration of 20 g Carbo. COD/L. In this novel method using CDMW, thermophilic H2-producing granules with an average particle size of 1.3 mm was successfully developed after 100 days. The more bioenergy recovery was attempted in a post-treatment process using a mesophilic UASB reactor for CH4 production from the H2 fermented effluent. The maximum CH4 yield of 325 mL of CH4/g COD was achieved with removing 93% of the COD at an organic loading rate of 3.5 g COD/L/d. The developed two-stage UASB reactor system achieved biogas conversion by 88.2% (H2 15.2% and CH4 73%) and COD removal by 98%.  相似文献   

8.
Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Batch digesters (300 cm3) were operated under mesophilic conditions during two experiments (BMP1; BMP2). In BMP1, the effect of co-digesting radish and manure on CH4 and H2S production was determined by increasing the mass fraction of fresh above-ground radish in the manure-based co-digestion mixture from 0 to 100%. Results showed that forage radish had 1.5-fold higher CH4 potential than dairy manure on a volatile solids basis. While no synergistic effect on CH4 production resulted from co-digestion, increasing the radish fraction in the co-digestion mixture significantly increased CH4 production. Initial H2S production increased as the radish fraction increased, but the sulfur-containing compounds were rapidly utilized, resulting in all treatments having similar H2S concentrations (0.10–0.14%) and higher CH4 content (48–70%) in the biogas over time. The 100% radish digester had the highest specific CH4 yield (372 ± 12 L kg−1 VS). The co-digestion mixture containing 40% radish had a lower specific CH4 yield (345 ± 2 L kg−1 VS) but also showed significantly less H2S production at start-up and high quality biogas (58% CH4). Results from BMP2 showed that the radish harvest date (October versus December) did not significantly influence radish C:N mass ratios or CH4 production during co-digestion with dairy manure. These results suggest that dairy farmers could utilize forage radish, a readily available substrate that does not compete with food supply, to increase CH4 production of manure digesters in the fall/winter.  相似文献   

9.
In this study, a two-stage biohythane production system was used to treat swine manure to solve the high Chemical Oxygen Demand (COD) concentration and verify the total energy recovery between the two-stage and a traditional single-stage system. Experiments were carried out in single-stage methane production, two-stage biohythane production in long Hydraulic Retention Time (HRT), and short HRT. The COD removal efficiency and energy recovery were finally compared between single-stage (CH4 fermenter) and two-stage (H2+ CH4 fermenter) systems. The results showed that the methane production rate of 53.2 ± 2.7 mL/d.L, the COD removal efficiency of 29.6 ± 5.8%, and total energy recovery of 2.9 ± 0.1 kJ/L.d was obtained in the single-stage of methane production system with HRT 11.08 d, pH 7, and temperature 55 °C, respectively. In the two-stage of hydrogen and methane productions system, the hydrogen production rate of 1.8 ± 0.7 mL/d.L, the methane production rate of 65.7 ± 2.5 mL/d.L, the COD removal rate was 97.8 ± 1.7%, and the total energy recovery of 3.6 ± 0.1 kJ/L.d was obtained and stabilized when the sugary wastewater content gradually reduced to 0%. This study shows that the methane production rate increases 20%, COD removal efficiency increases to 97.8 ± 1.7%, and total energy recovery increases 30%. At the same time, the single-stage (CH4 fermenter) switched to a two-stage (H2+ CH4 fermenter) system. The two-stage anaerobic biohythane production system successfully treated the high organic swine manure and obtained a higher energy recovery against the traditional single-stage of the biomethane production system.  相似文献   

10.
Microwave alkali pretreated sugarcane bagasse was used as a substrate for production of cellulolytic enzymes, needed for biomass hydrolysis. The pretreated sugarcane bagasse was enzymatic hydrolyzed by crude unprocessed enzymes cellulase (Filter paper activity 9.4 FPU/g), endoglucanase (carboxymethylcellulase, 148 IU/g), β-glucosidase (116 IU/g) and xylanase (201 IU/g) produced by Aspergillus flavus using pretreated sugarcane bagasse as substrate under solid state fermentation. Concentrated enzymatic hydrolyzate was used for ethanol production using Saccharomyces cerevisiae immobilized on various matrices. The yield of ethanol was 0.44 gp/gs in case of yeast immobilized sugarcane bagasse, 0.38 gp/gs using Ca-alginate and 0.33 gp/gs using agar-agar as immobilization matrices. The immobilized yeast studied up to 10 cycles in case of immobilized sugarcane bagasse and up to 4 cycles in case of agar-agar and calcium alginate for ethanol production under repeated batch fermentation study.  相似文献   

11.
Microbial electrochemical system (MES) was integrated into anaerobic digestion (AD) to improve the overall process efficiency by enhancing methane (CH4) production. CH4 fermentation at various glucose concentrations (2, 4, 8 and 10 g/l) was evaluated along with corresponding control (without electrodes) operations. The maximum CH4 yield of 0.34 l- CH4/g COD was obtained with both 2 and 4 g/l glucose concentrations (MES), which was about 1.4 and 2.4 times, respectively, higher than the values obtained with corresponding control operations. However, at 10 g/l, similar performance (∼0.07 l- CH4/g COD) was observed with both control and MES operations, which might be due to pH drop occurred by volatile fatty acids (VFAs) buildup in the process. Substrate removal was amplified in the presence of MES with faster degradation of VFAs at all substrate concentrations except 10 g/l. This enhanced utilization of VFAs in the MES process is an important aspect to recover from initial pH drops, especially at higher substrate concentration to maintain the optimum pH for methane fermentation. The current generation and cyclic voltammetric profiles suggest that the enhanced CH4 production in MES was attributed to the bioelectrochemical reactions on the electrodes.  相似文献   

12.
This study investigates the co-digestion of poultry manure (PM) with sugar beet pulp residues (SBPR) obtained from saccharification and dewatering of sugar beet pulp. The laboratory-scale experiments were conducted under batch and semi-continuous conditions at mesophilic temperatures (35 °C). Batch tests gave specific biogas and methane yields of 590 dm3/kgVSfed and 423 dm3CH4/kgVSfed, respectively for SBPR, whereas the corresponding values for PM were 434 dm3/kgVSfed and 300 dm3CH4/kgVSfed. The co-digestion of PM with SBPR was found to increase biogas and methane yields compared to the manure alone. In semi-continuous reactor experiments, the highest methane yield of 346 dm3 CH4/kgVSfed was achieved for the mixture containing poultry manure with 50% SBPR (weight basis) and a solids retention time (SRT) of 20 days. However, when poultry manure was digested as a sole feedstock, the biogas production was inhibited by ammonia, whereas the co-digestion of PM with 25% SBPR was slightly affected by volatile fatty acids, which concentrations exceeded 4000 g/m3.  相似文献   

13.
Alkali pretreatment of sugarcane tops was carried out with 3% NaOH for 60 min at 121 °C in a laboratory autoclave. The effect of solid loading, enzyme loading, incubation time and surfactant concentration on enzymatic saccharification was studied using a response surface method according to Box–Behnken design. Under optimized conditions 77.5% sugar was recovered from the pretreated biomass. This yield was seven times higher than that obtained with untreated sugarcane tops. A substantial amount of lignin (90%) was removed by this pretreatment method. Physicochemical characterization of native and alkali pretreated sugarcane tops were carried out by XRD, FTIR and SEM and the changes in the chemical composition were also monitored. The X-ray diffraction profile showed that the degree of crystallinity was higher for alkali pretreated biomass than that for native.  相似文献   

14.
Biomethane (CH4) was recovered from co-digestion process of waste glycerol and banana wastes. The wastes used contain waste glycerol with varying concentrations from 7.5 to 90 g L−1 and banana peel in the range 2.5–10 %w·v−1. The co-substrate mixture ratio was implemented in 0.5 L batch reactor operated at 37 °C and pH 7 for 120 h. The composition of biogas gas and liquid samples (COD, VFA, pH, alkalinity) were analyzed every 12 and 24 h, respectively. The optimum condition to produce CH4 was found at 7.5 g L−1 waste glycerol mixed with 7.5% banana peel. The highest CH4 yield and CH4 production potential were 0.281 m3 kg−1 COD and 652 mL, respectively.  相似文献   

15.
The increase was predicted of the methane (CH4) yield between untreated and pretreated weeds prior to co-digestion with cow dung. The mixed substrate slurry of weed was prepared using a ratio of weed to cow dung to water of 10:10:80, respectively. The total volatile solids (TVS) and total solids (TS) of the mixed substrate slurry of the untreated weeds were the two parameters input in the developed equation. Four types of weeds were used in the test: French weed, para grass, water lettuce, and sedge. The results showed that the % increase in CH4 yield depended on the ratio of TVS/TS of the mixed substrate slurry of the untreated weeds. The proposed developed equation was Y = 221.05X – 152.46, where X is the initial ratio of TVS/TS of mixed substrate slurry of untreated weed and cow dung, and Y is the % increase in CH4 yield obtained when the weed is pretreated using 1% sodium hydroxide for 24 hr prior to co-digestion. Water hyacinth was used as the substrate to verify the equation, and the results indicated that the equation performed well. Verification confirmed that the proposed equation successfully provided an accurate (within 10%) prediction of the % increase in CH4 yield. The equation could be useful in developing pretreatment options for weed co-digestion and environmental management.  相似文献   

16.
A novel single-reactor system having entrapped anaerobic microorganisms has been developed to co-produce H2 and CH4. pH is one of the key operating and environmental parameters affecting the performance of a bio-system. This work aimed to investigate the pH shock effects on the novel biohythane system. The experiments were suddenly changing the original cultivation pH value of 6 into 4, 5, 7 or 8 for 4 h. The results indicate that a short pH shock could be used to regulate H2/CH4 composition without notably affecting biogas yield and chemical oxygen demand (COD) removal. Peak biohythane production was obtained after the pH shock to 8, having H2/CH4 yields of 11.5 ± 1.6/44.8 ± 3.1 mL/g COD. During pseudo steady-state conditions of effective cultivation periods, the values of H2 content in biohythane and COD removal efficiency were in ranges of 20–39% and 71–79%, respectively. The significances and applications of the experimental results have been discussed. The novelty of this work is elucidating a less-discussed field-operation problem of pH perturbances for a newly-developed biohythane system.  相似文献   

17.
This research focuses on parametric influence on product distribution and syngas production from conventional gasification. Three experimental parameters at three different levels of temperature (700, 800 and 900 °C), sugarcane bagasse loading (2, 3 and 4 g) and residence time (10, 20 and 30 min) were studied using horizontal axis tubular furnace. Response Surface Methodology supported by central composite design was adopted in order to investigate parameters impact on product distribution (i.e., gas, tar and char) and gaseous products (i.e., H2, CO, CO2 and CH4). The highest H2 fraction obtained was 42.88 mol% (36.91 g-H2 kg-biomass−1) at 3 g of sugarcane bagasse loading, 900 °C and 30 min reaction time. The temperature was identified as the most influential parameter followed by reaction time for H2 production and diminishing the bio-tar and char yields. An increase in sugarcane bagasse loading, on other hand, favored the production of bio-tar, CO2 and CH4 production. The statistical analysis verified temperature as most significant (p-value 0.0008) amongst the parameters investigated for sugarcane bagasse biomass gasification.  相似文献   

18.
Psychrophilic dry anaerobic digestion (PDAD) of animal manures and agriculture residues is of high interest in cold-climate regions. This paper reports the results of a start-up experiment (113 days) of PDAD of cow feces and wheat straw mixture (at two total solids (TS) of 18 and 21%) in laboratory scale sequence batch reactor (SBR) at 20 °C. An average specific methane yield (SMY) of 96.1 ± 5 L of CH4 per kg of volatile solid (VS) corrected to standard pressure and temperature (101.3 kPa and 273 K) (NL CH4 kg−1 VS) has been achieved for a feed with TS of 18% along with an organic loading rate (OLR) 4.0 g total chemical oxygen demand (TCOD) kg−1 inoculum day−1 and a treatment cycle length (TCL) of 21 days. An average SMY of 149.9 ± 14 NL CH4 kg−1 VS with a maximum daily CH4 production rate of 7.2 ± 0.7 NL CH4 kg−1 VS day−1 have been obtained for a feed with total solid of 21% along with an average daily inoculum OLR of 4.2 g TCOD kg−1 inoculum day−1 and TCL of 21 days. The rapid decrease in volatile fatty acids concentration after 7 days of treatment and their low concentration thereafter indicated that hydrolysis was the reaction limiting step. The results indicate that PDAD of cow feces and wheat straw is feasible at feed TS of 21%.  相似文献   

19.
Batch production of biohydrogen from cassava wastewater pretreated with (i) sonication, (ii) OPTIMASH BG® (enzyme), and (iii) α-amylase (enzyme) were investigated using anaerobic seed sludge subjected to heat pretreatment at 105 °C for 90 min. Hydrogen yield at pH 7.0 for cassava wastewater pretreated with sonication for 45 min using anaerobic seed sludge was 0.913 mol H2/g COD. Results from pretreatment with OPTIMASH BG® at 0.20% and pH 7 showed a hydrogen yield of 4.24 mol H2/g COD. Superior results were obtained when the wastewater was pretreated with α-amylase at 0.20% at pH 7 with a hydrogen yield of 5.02 mol H2/g COD. In all cases, no methane production was observed when using heat-treated sludge as seed inoculum. Percentage COD removal was found to be highest (60%) using α-amylase as pretreatment followed by OPTIMASH BG® at 54% and sonication (40% reduction rate). Results further suggested that cassava wastewater is one of the potential sources of renewable biomass to produce hydrogen.  相似文献   

20.
Pretreatment and saccharification of lignocellulosic materials is the key technology affecting the efficiency of cellulosic biohydrogen production. In this work, two pure cellulosic materials (i.e., carboxymethyl-cellulose (CMC) and xylan) were directly hydrolyzed (without pretreatment) by a cellulolytic isolate Cellulomonas uda E3-01 able to release extracellular cellulolytic enzymes. Natural cellulosic feedstock (i.e., sugarcane bagasse) was chemically pretreated prior to the bacterial hydrolysis.A temperature-shift strategy (35 °C for cellulolytic enzymes production and 45 °C for hydrolysis reaction) was used to increase the production of reducing sugars during the bacterial hydrolysis. The hydrolysates of CMC, xylan, and bagasse were efficiently converted to H2 via dark fermentation with Clostridium butyricum CGS5. The maximum hydrogen yield was 8.80 mmol H2/g reducing sugar (i.e., 1.58 mol H2/mol hexose) for CMC, 6.03 mmol H2/g reducing sugar (i.e., 0.91 mol H2/mol pentose) for xylan, and 6.01 mmol H2/g reducing sugar for bagasse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号