首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To find a solution to efficiently exploit renewable energy sources is a key step to achieve complete independence from fossil fuel energy sources. Hydrogen is considered by many as a suitable energy vector for efficiently exploiting intermittent and unevenly distributed renewable energy sources. However, although the production of hydrogen from renewable energy sources is technically feasible, the storage of large quantities of hydrogen is challenging. Comparing to conventional compressed and cryogenic hydrogen storage, the solid-state storage of hydrogen shows many advantages in terms of safety and volumetric energy density. Among the materials available to store hydrogen, metal hydrides and complex metal hydrides have been extensively investigated due to their appealing hydrogen storage properties. Among several potentials candidates, magnesium hydride (MgH2) and lithium borohydride (LiBH4) have been widely recognized as promising solid-state hydrogen storage materials. However, before considering these hydrides ready for real-scale applications, the issue of their high thermodynamic stability and of their poor hydrogenation/dehydrogenation kinetics must be solved. An approach to modify the hydrogen storage properties of these hydrides is nanoconfinement. This review summarizes and discusses recent findings on the use of porous scaffolds as nanostructured tools for improving the thermodynamics and kinetics of MgH2 and LiBH4.  相似文献   

2.
Magnesium has been studied as a potential hydrogen storage material for several decades because of its relatively high hydrogen storage capacity, fast sorption kinetics (when doped with transition metal based additives), and abundance. This research aims to study the possibility to use waste magnesium alloys to produce good quality MgH2. The production costs of hydrogen storage materials is still one of the major barriers disabling scale up for mobile or stationary application. The recycling of magnesium-based waste to produce magnesium hydride will significantly contribute to the cost reduction of this material. This study focuses on the effect of different parameters such as the addition of graphite and/or Nb2O5 as well as the effect of milling time on the material hydrogenation/de-hydrogenation performances. In addition, morphology and microstructural features are also evaluated for all the investigated materials.  相似文献   

3.
Swelling characteristics of hydrogen storage alloy (HSA) with hydrogen content change were experimentally determined. Its kinetic behavior is important for an HSA actuator which is driven by the volume change of the HSA in a hydrogen atmosphere. Although hydrogen absorption characteristics of the alloy are expected to be strongly related to the actuator performance, it is difficult to clarify the relationship using the previous HSA actuators which consist of plural materials. In this paper, the authors investigated the swelling ratio and the response time of palladium powder in a hydrogen atmosphere. As a result, the swelling ratio increased with hydrogen absorption amount. The response time increased with hydrogen pressure during pressurization, while it was independent of pressure. It was revealed from reaction kinetics that a rate-limiting step was diffusion and interfacial reaction during the pressurization and the evacuation, respectively. Thus, the swelling property of palladium is determined from its hydrogen absorption behavior, which suggests the HSA actuator can be designed based on hydrogen storage characteristics.  相似文献   

4.
Hydrogen storage alloys are a group of new functional intermetallics which can be used in heat pumps, catalysts, hydrogen sensors and Ni/MH batteries. The development of Ni/MH (Metal Hydride) batteries based on MH negative electrodes has seen considerable activity in recent years. Batteries based on such hydride materials have some major advantages over the more conventional lead–acid and nickel–cadmium systems. These advantages include: high-energy density; high-rate capability; tolerance to overcharge and over-discharge; the lack of any poisonous heavy metals; and no electrolyte consumption during charge/discharge cycling. The most important electrochemical characteristics of the hydrogen storage compounds used in these batteries include capacity, cycle lifetime, exchange current density and equilibrium potential. These characteristics can be changed by designing the composition of the hydrogen storage alloy to provide optimum performance of the Ni/MH batteries. The electrochemical behaviour of such intermetallics depends on the types of intermetallics (mainly AB2 and AB5), microstructure, the nature and amount of each element in the intermetallic compound, and the electrochemical process(es) taking place. The addition of some highly electrocatalytic materials for the hydrogen evolution reaction (h.e.r.) are beneficial in generating optimum performance for the MH electrodes. In this paper, we present some recent results on the electrochemical behaviour of such compounds and the mechanisms of the electrochemical reactions.  相似文献   

5.
Vanadium-based alloys (VBAs) occupy a prominent position in the field of hydrogen storage materials due to their many advantages, including the ability to absorb/desorb hydrogen with high capacity under moderate conditions. However, the kinetic and thermodynamic properties of these alloys must be improved to expand the range of their practical applications. In this work, we systematically studied the influence of La doping on the microstructure and hydrogen storage performance of multicomponent VBAs. It was found that the as-cast multicomponent V48Fe12Ti30Cr10 alloy prepared by arc melting contained micrometer/nanometer-sized crystals, which differed from the microstructure of traditional coarse-grained VBAs fabricated in the past decades. After the alloy was doped with La metal, its grains were refined into nanocrystallites with remarkable hydrogen absorption properties. This indicates that nanostructured VBAs can be realized by casting techniques, which is a traditional, low-cost, and engineering approach. The hydrogen storage capacity of the alloys first increased and then decreased with increasing La content. Furthermore, La doping considerably increased the alloy cycling stability. These findings can be used to develop novel hydrogen absorption materials for fuel cells with superior kinetic and thermodynamic properties.  相似文献   

6.
Mg-based materials have been widely researched for hydrogen storage development due to the low price of Mg, abundant resources of Mg element in the earth's crust and the high hydrogen capacity (ca. 7.7 mass% for MgH2). However, the challenges of poor kinetics, unsuitable thermodynamic properties, large volume change during hydrogen sorption cycles have greatly hindered the practical applications. Here in this review, our recent achievements of a new research direction on Mg-based metastable nano alloys with a Body-Centered Cubic (BCC) lattice structure are summarized. Different with other metals/alloys/complex hydrides etc. which involve significant lattice structure and volume change from hydrogen introduction and release, one unique nature of this kind of metastable nano alloys is that the lattice structure does not change obviously with hydrogen absorption and desorption, which brings interesting phenomenon in microstructure properties and hydrogen storage performances (outstanding kinetics at low temperature and super high hydrogen capacity potential). The synthesis results, morphology and microstructure characterization, formation evolution mechanisms, hydrogen storage performances and geometrical effect of these metastable nano alloys are discussed. The nanostructure, fresh surface from ball milling process and fast hydrogen diffusion rate in BCC lattice structure, as well as the unique nature of maintaining original BCC metal lattice during hydrogenation result in outstanding hydrogen storage performances for Mg-based metastable nano alloys. This work may open a new sight to develop new generation hydrogen storage materials.  相似文献   

7.
MgH2 is one of the most attractive candidates for on-board H2 storage. However, the practical application of MgH2 has not been achieved due to its slow hydrogenation/dehydrogenation kinetics and high thermodynamic stability. Many strategies have been adopted to improve the hydrogen storage properties of Mg-based materials, including modifying microstructure by ball milling, alloying with other elements, doping with catalysts, and nanosizing. To further improve the hydrogen storage properties, the nanostructured Mg is combined with other materials to form nanocomposite. Herein, we review the recent development of the Mg-based nanocomposites produced by hydrogen plasma-metal reaction (HPMR), rapid solidification (RS) technique, and other approaches. These nanocomposites effectively enhance the sorption kinetics of Mg by facilitating hydrogen dissociation and diffusion, and prevent particle sintering and grain growth of Mg during hydrogenation/dehydrogenation process.  相似文献   

8.
(2LiNH2 + MgH2) system is one of the most promising hydrogen storage materials due to its suitable operation temperature and high reversible hydrogen storage capacity. In studies and applications, impurities such as CO, CO2, O2, N2 and CH4 are potential factors which may influence its performance. In the present work, hydrogen containing 1 mol% CO is employed as the hydrogenation gas source, and directly participates in the reaction to investigate the effect of CO on the hydrogen sorption properties of (2LiNH2 + MgH2) system. The results indicate that the hydrogen capacity of the (Mg(NH2)2 + 2LiH) system declines from 5 wt.% to 3.45 wt.% after 6 cycles of hydrogenation and dehydrogenation, and can not restore to its initial level when use purified hydrogen again. The hydrogen desorption kinetics decreases obviously and the dehydrogenation activation energy increases from 133.35 kJ/mol to 153.35 kJ/mol. The main reason for these is that two new products Li2CN2 and MgO appear after (2LiNH2 + MgH2) react with CO. They are formed on the surface of materials particles, which may not only cause a permanent loss of NH2−, but also prevent the substance transmission during the reaction process. After re-mechanically milling, both kinetics and dehydrogenation activation energy can be recovered to the initial level.  相似文献   

9.
Metal hydrides have been investigated for use in a number of applications, such as heat regenerators, thermal compressors, and hydrogen storage. McKibben actuators are pneumatic actuators that have unique characteristics, such as biomimeticity (having force/linear displacement characteristics similar to muscles), compactness, high force-to-mass ratios, and moreover are lubricationless, noiseless, soft actuating, and environmentally benign. Actuators with these characteristics are ideal for many industrial, space, defense, robotic, and biomedical applications. The combination of metal hydride technology with McKibben actuators builds on the advantages of both technologies, while mitigating the deficiencies of each. Herein, we report results from a comprehensive simulation strategy for a LaNi4.34.3Al0.70.7-based McKibben actuator. The simulations are able to predict and characterize the performance bounds of the actuator in terms of actuator time/thermal input, power/efficiency, and force/displacement diagrams. The advantages and disadvantages of the design are discussed from these perspectives.  相似文献   

10.
Thermo-chemical energy storage based on metal hydrides has gained tremendous interest in solar heat storage applications such as concentrated solar power systems (CSP) and parabolic troughs. In such systems, two metal hydride beds are connected and operating in an alternative way as energy storage or hydrogen storage. However, the selection of metal hydrides is essential for a smooth operation of these CSP systems in terms of energy storage efficiency and density. In this study, thermal energy storage systems using metal hydrides are modeled and analyzed in detail using first law of thermodynamics. For these purpose, four conventional metal hydrides are selected namely LaNi5, Mg, Mg2Ni and Mg2FeH6. The comparison of performance is made in terms of volumetric energy storage and energy storage efficiency. The effects of operating conditions (temperature, hydrogen pressure and heat transfer fluid mass flow rates) and reactor design on the aforementioned performance metrics are studied and discussed in detail. The preliminary results showed that Mg-based hydrides store energy ranging from 1.3 to 2.4 GJ m?3 while the energy storage can be as low as 30% due to their slow intrinsic kinetics. On the other hand, coupling Mg-based hydrides with LaNi5 allow us to recover heat at a useful temperature above 330 K with low energy density ca.500 MJ m?3 provided suitable operating conditions are selected. The results of this study will be helpful to screen out all potentially viable hydrides materials for heat storage applications.  相似文献   

11.
In order to achieve rapid hydrogen charging and discharging of high-density hydrogen storage alloys in metal hydride (MH) tank, it is key to optimize the design of MH tank by simulation based on a credible numerical model. Herein, a multi-physical field mathematical model coupled with kinetic equations and heat & mass transfer equations for the de-/hydrogenation of Ti0.95Zr0.05Mn0.9Cr0.9V0.2 alloy in MH tank is proposed. According to experimental kinetic curves, appropriate kinetic equations dominated by different rate control steps are chosen for simulating gas-solid reactions. With excellent match between experimental and simulated kinetic results under different pressure and temperature operating conditions, a novel numerical model is established to predict the local temperature variation during the de-/hydrogenation of Ti0.95Zr0.05Mn0.9Cr0.9V0.2 alloy in a self-designed hydrogen storage tank with high-density hydrogen storage of 55.1 g H2/L. Interestingly, further calculated results reveal that the temperature evolution can be accurately matched, which proves the reliability of the designed numerical model and favors to predict the de-/hydriding behaviors. This investigation provides an effective means for subsequent structure optimization and energy & mass transfer performance optimization of high-density hydrogen storage devices, and sheds light on the numerical simulation of heat & mass transfer for advanced energy storage applications.  相似文献   

12.
Hydrogen storage nanocomposites prepared by high energy reactive ball milling of magnesium and vanadium alloys in hydrogen (HRBM) are characterised by exceptionally fast hydrogenation rates and a significantly decreased hydride decomposition temperature. Replacement of vanadium in these materials with vanadium-rich Ferrovanadium (FeV, V80Fe20) is very cost efficient and is suggested as a durable way towards large scale applications of Mg-based hydrogen storage materials. The current work presents the results of the experimental study of Mg–(FeV) hydrogen storage nanocomposites prepared by HRBM of Mg powder and FeV (0–50 mol.%). The additives of FeV were shown to improve hydrogen sorption performance of Mg including facilitation of the hydrogenation during the HRBM and improvements of the dehydrogenation/re-hydrogenation kinetics. The improvements resemble the behaviour of pure vanadium metal, and the Mg–(FeV) nanocomposites exhibited a good stability of the hydrogen sorption performance during hydrogen absorption – desorption cycling at T = 350 °C caused by a stability of the cycling performance of the nanostructured FeV acting as a catalyst. Further improvement of the cycle stability including the increase of the reversible hydrogen storage capacity and acceleration of H2 absorption kinetics during the cycling was observed for the composites containing carbon additives (activated carbon, graphite or multi-walled carbon nanotubes; 5 wt%), with the best performance achieved for activated carbon.  相似文献   

13.
Biomass derived carbon materials have been widely studied as electrodes in energy storage devices due to their renewable nature, low-cost and tunable physical/chemical properties. However, the influences of different treatments for biomass derived carbon materials are still lack of in-depth discussion. In this work, we investigate the effects of the treatment for biomass on the structure and composition of the resulted carbon materials. Especially, the optimal N-doped porous carbon (NPCCS), which was fabricated by H2SO4-assisted hydrothermal treatment and subsequent pyrolysis process using corn silk as raw material, shows a unique interconnected layered nanostructure with ultra-high nitrogen content (18.79 at%). As a result, the NPCCS electrode displays excellent cycling stability and outstanding rate performance in lithium-ion half-cell test and shows high first reversible specific capacity of 523.6 mAh g?1 in full-cell test. This work provides some guidance for preparing biomass derived carbon materials with superior electrochemical performance for the applications in advanced energy storage devices.  相似文献   

14.
Recently, silanides (MSiH3) have been proposed as the possible hydrogen storage materials due to their hydrogen storage properties. Among these silanides, KSiH3 has been considered as leading contender due to its high hydrogen storage capacity i.e. 4.3 wt% and suitable thermodynamic parameters. It can absorb and desorb hydrogen reversibly at near ambient temperature, however, a high activation barrier slows down its kinetics. To enhance its kinetic properties, several catalysts have been attempted so far. Nb2O5 has been proven as leading catalyst with significant improvement. In the present work, Fe based catalysts were chosen due to their suitability for hydrogen storage materials. Among all the studied catalysts in this work, Fe2O3 was found to be the most effective catalyst, reducing the activation energy down to 75 kJ mol−1 from 142 kJ mol−1 for pristine KSi.  相似文献   

15.
The heat transfer oil dibenzyltoluene (DBT) offered an intriguing approach for the scattered storage of renewable excess energy as a novel Liquid Organic Hydrogen Carrier (LOHC). The integration of hydrogenation and dehydrogenation in H0-DBT/H18-DBT pairs demonstrated that the feasibility of hydrogenation and dehydrogenation reaction conducted in one reactor with the same catalyst, which would be proposed to simplify the hydrogen storage process. The optimal reaction temperature based on the inhibition of ring opening and cracking was investigated combined with the 1H NMR analysis. Meanwhile, the ideal catalyst 3 wt% Pt/Al2O3 for high hydrogen storage efficiency was screened out. Cycle tests of hydrogenation and dehydrogenation integration reaction had shown that the hydrogen storage efficiency was 84.6% after five cycle tests. The integration of hydrogenation and dehydrogenation reaction based on DBT exhibited the ideal thermal stability, which demonstrated its potential as a reversible H2 carrier.  相似文献   

16.
The need for the enhancement of alternative energy sources is increasingly recognised and, in this perspective, the achievement of hydrogen economy seems to be fundamental. In this regard, fuel cells represent an interesting option for small and medium scale distributed renewable generation; however, these systems are inextricably linked with the concept of hydrogen storage. Research on metal hydrides revealed the opportunity to use these materials as basic elements in hydrogen storage devices, called MH systems. This means that interest exists in investigating the behaviour of metal hydrides: in fact, MH system operation is based on the hydriding/dehydriding reactions hydrides undergo, and, with the aim of evaluating the performance of such devices, these processes must be discussed and modelled.In the light of this, a simple numerical model to study hydride-based storage systems and their integration with fuel cells was developed: two low-temperature hydrides (LaNi5, LaNi4·8Al0.2) and two high-temperature hydrides (Mg, Mg2Ni) were selected and their behaviours in a MH system were simulated and compared with the help of such a model. This is an essential step in identifying the hydrides more suited to the application in question. Results showed that the choice is the trade off between encumbrance and reaction times; this implies that low-temperature hydrides are preferable because their encumbrance is limited and their reaction temperature range grants a greater versatility in small scale generation.  相似文献   

17.
In this study, the hydrogen storage performance of commercial AZ31-Mg alloys combined with various allotropes of carbon was investigated and the microstructural modifications with respect to plastic deformation and high energy milling techniques investigated, with the aim of obtaining enhanced hydrogen storage efficiency. The hydrogen storage performance of alloys prepared with different weight ratios of carbonaceous materials as a catalyst was monitored in order to explore the effective improvement in hydrogen storage performance through microstructural modification. Additionally, the effects of different processing methods such as equal channel angular pressing (ECAP) and high energy ball milling (HEBM) were also observed. AZ31 Mg based composites with various carbon additives were produced through gravity resistance casting and their micrographic structures examined through optical Microscopy (OM), X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The average particle size distributions of the sample powders were also measured. The rate of hydrogenation kinetics was calculated by a Sievert's type apparatus. Significant enhancement of the hydrogenation performance was obtained with the addition of carbonaceous materials. Overall, the hydrogen storage performance after ECAP deformation of the AZ31-3CB (carbon Black) composite showed a gain in the maximum capacity of 6.72 ± 0.05 wt%. Similar, after milling of the AZ31-3G (Graphene) composite materials, a maximum potential capacity of 6.83 ± 0.04 wt% was attained within 792 ± 144.34 s, with desorption of the entire H2 content in 143.2 ± 26.09 s. The obtained results revealed significant improvement in the hydrogen storage capacity of AZ31-Mg alloys with the addition of carbon materials and with respect to plastic deformation and milling techniques.  相似文献   

18.
Metal-organic framework/graphene oxide (MOF/GO) composites have been regarded as potential room-temperature hydrogen storage materials recently. In this work, the influence of MOF structural properties, GO functional group contents and different amounts of doped lithium (Li+) on hydrogen storage performance of different MOF/GO composites were investigated by grand canonical Monte Carlo (GCMC) simulations. It is found that MOF/GO composites based on small-pore MOFs exhibit enhanced hydrogen storage capacity, whereas MOF/GO based on large-pore MOFs show decreased hydrogen storage capacity, which can be ascribed to the novel pores at MOF/GO interface that favors the enhanced hydrogen storage performance due to the increased pore volume/surface area. By integrating the small-pore MOF-1 with GO, the hydrogen storage capacity was enhanced from 9.88 mg/go up to 11.48 mg/g. However, the interfacial pores are smaller compared with those in large-pore MOFs, resulting in significantly reduced pore volume/surface area as well as hydrogen storage capacities of large-pore MOF/GO composite. Moreover, with the increased contents of hydroxyl, epoxy groups as well as carboxyl group modification, the pore volumes and specific surface areas of MOF/GO are decreased, resulting in reduced hydrogen storage performance. Furthermore, the room-temperature hydrogen storage capacities of Li+ doped MOF/GO was improved with increased Li+ at low loading and decrease with the increased Li+ amounts at high loading. This is due to that the introduced Li+ effectively increases the accessible hydrogen adsorption sites at low Li+ loading, which eventually favors the hydrogen adsorption capacity. However, high Li+ loading causes ion aggregation that reduces the accessible hydrogen adsorption sites, leading to decreased hydrogen storage capacities. MOF-5/GO composites with moderate Li+ doping achieved the optimum hydrogen storage capacities of approximately 29 mg/g.  相似文献   

19.
We propose a simple strategy to effectively improve the hydrogenation and dehydrogenation kinetics of Mg based hydrogen storage alloys. We designed and prepared an Mg91.9Ni4.3Y3.8 alloy consisting of a large quantity of long-period stacking ordered (LPSO) phases. A type of highly dispersed multiphase nanostructure, which can markedly promote the de/hydrogenation kinetics, has been obtained utilizing the decomposition of LPSO phases at first a few of hydrogenation reactions. The fine structures of LPSO phases and the microstructural evolutions of the alloy during hydrogenation and dehydrogenation reactions were in detail characterized by means of transmission electron microscopy (TEM). The LPSO phases transformed to MgH2, Mg2NiH4, and YH3 after the first hydrogenation. The highly dispersed nanostructure at macro and micro (nano) scale range remains even after several de/hydrogenation cycles. The alloy shows excellent hydrogen storage properties and its reversible hydrogen absorption/desorption capacities are about 5.8 wt% at 300 °C. Particularly, the alloy exhibits very fast dehydrogenation kinetics. The dehydrogenated sample can release approximately 5 wt% hydrogen at 300 °C within 200 s and 5.5 wt% within 600 s. We elucidate the structural mechanism of the alloy with outstanding hydrogen storage performance.  相似文献   

20.
In the last one decade hydrogen has attracted worldwide interest as an energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and applications of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel and richest in energy per unit mass. It will provide, Cheap Electricity, Cook Food, Drive Car, Run Factories, Jet Planes, Hydrogen Village and for all our domestic energy requirements. In short hydrogen shows the solution and also allows the progressive and non-traumatic transition of today's energy sources, towards feasible safe reliable and complete sustainable energy chains. The present article deals with the hydrogen storage in metal hydrides with particular interest in Mg as it has potential to become one of the most promising storage materials. Many metals combine chemically with Hydrogen to form a class of compounds known as Hydrides. These hydrides can discharge hydrogen as and when needed by raising their temperature or decreasing the external pressure. An optimum hydrogen-storage material is required to have various properties viz. high hydrogen capacity per unit mass and unit volume which determines the amount of available energy, low dissociation temperature, moderate dissociation pressure, low heat of formation in order to minimize the energy necessary for hydrogen release, low heat dissipation during the exothermic hydride formation, reversibility, limited energy loss during charge and discharge of hydrogen, fast kinetics, high stability against O2 and moisture for long cycle life, cyclibility, low cost of recycling and charging infrastructures and high safety. So far the most of hydrogen storage alloys such as LaNi5, TiFe, TiMn2, have hydrogen storage capacities, not more than 2 wt% which is not satisfactory for practical application as per DOE Goal. A group of Mg based hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity upto 7.6 wt% for on board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system as well as by ball milling that introduces defects with improved surface properties. The studies reported promising results, such as improved kinetics and lower desorption temperatures, however, the state of the art materials are still far from meeting the aimed target for their transport applications. Therefore further research work is needed to achieve the goal by improving development on hydrogenation, thermal and cyclic behavior of metal hydrides. In the present article the possibility of commercialization of Mg based alloys has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号