首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel fluorene-containing poly(arylene ether sulfone nitrile)s (FPESN-m/n) multiblock copolymers bearing 1,2-dimethylimidazole groups (ImFPESN-m/n) were synthesized for preparing anion exchange membranes (AEMs). Bromination rather than chloromethylation was used in this work. The bulky and rigid fluorene groups were introduced to force each chain apart to create large interchain spacing. Strong polar nitrile groups were introduced into the hydrophobic segments with the intention of enhancing the anti-swelling property of the AEMs. The length of fluorene–containing hydrophobic segment was varied to study the structure–property of the AEMs. With the ion groups anchored selectively and densely on the hydrophilic segments, all the AEMs exhibited well-defined hydrophilic/hydrophobic microphase-separated structures. As a result, the AEMs showed high hydroxide conductivities in the range of 35.2–118.3 mS cm−1 from 30 to 80 °C and superb ratios of ionic conductivity to swelling at 80 °C. Furthermore, the AEMs also exhibited good mechanical properties, thermal and alkaline stabilities.  相似文献   

2.
In recent years, ether-free polyaryl polymers prepared by superacid-catalyzed Friedel-Crafts polymerization have attracted great research interest in the development of anion exchange membranes(AEMs) due to their high alkali resistance and simple synthesis methods. However, the selection of monomers for high-performance polymer backbone and the relationship between polymer structure construction and properties need further investigated. Herein, a series of free-ether poly(aryl piperidinium) (PAP) with different polymer backbone steric construction were synthesized as stable anion exchange membranes. Meta-terphenyl, p-terphenyl and diphenyl-terphenyl copolymer were chosen as monomers to regulate the spatial arrangement of the polymer backbone, which tethered with stable piperidinium cation to improve the chemical stability. In addition, a multi-cation crosslinking strategy has been applied to improve ion conductivity and mechanical stability of AEMs, and further compared with the performance of uncrosslinked AEMs. The properties of the resulting AEMs were investigated and correlated with their polymer structure. In particular, m-terphenyl based AEMs exhibited better dimensional stability and the highest hydroxide conductivity of 144.2 mS/cm at 80 °C than other membranes, which can be attributed to their advantages of polymer backbone arrangement. Furthermore, the hydroxide conductivity of the prepared AEMs remains 80%–90% after treated by 2 M NaOH for 1600 h, exhibiting excellent alkaline stability. The single cell test of m-PTP-20Q4 exhibits a maximum power density of 239 mW/cm2 at 80 °C. Hence, the results may guide the selection of polymer monomers to improve performance and alkaline durability for anion exchange membranes.  相似文献   

3.
Crosslinking is a valid approach to enhance the mechanical and durability performance of anion exchange membranes (AEMs). Herein, a facile and effective self-crosslinking strategy, with no need for an additional crosslinker or a catalyzer, is proposed. A series of tunable self-crosslinking and ion conduction polynorbornene membranes are designed. The 5-norbornene-2-methylene glycidyl ether (NB-MGE) component which affords self-crosslinking enhances dimensional stability, while the flexible 5-norbornene-2-alkoxy-1-hexyl-3-methyl imidazolium chloride (NB-O-Im+Cl) hydrophilic unit contributes high conductivity. The crosslinking significantly decreases the water uptake, and water swelling ratio provides excellent solvent-resistance and enhances the thermal and mechanical properties. Additionally, crosslinked rPNB-O-Im-x AEMs exhibit desirable alkaline stability. Impressively, the rPNB-O-Im-30 (IEC = 1.377) shows a moderate ion conductivity (61.8 m S cm−1, 80 °C), with a suppressed water absorption and 88.17% initial OH conductivity is maintained after treated for 240 h with a 1.0 M NaOH solution at 60 °C. Suitably assessed of rPNB-O-Im-30 AEM reveals a 98.4 mW cm−2 peak power density reached at a current density of about 208 mA cm−2. The report offers a facile and effectual preparative technique for preparing dimensional and alkaline stable AEMs for fuel cells applications.  相似文献   

4.
Herein, poly (phenylene) oxide (PPO)-based cross-linked anion exchange membranes (AEMs) with flexible, long-chain, bis-imidazolium cation cross-linkers are designed and synthesized. Although the cross-linked membranes possess high ion exchange capacity (IEC) values of up to 3.51–3.94 meq g−1, they have a low swelling degree and good mechanical strength because of their cross-linked structure. Though the membranes with the longest flexible bis-imidazolium cation cross-linker (BMImH-PPO) possess the lowest IEC among these PPO-based AEMs, they show the highest conductivity (24.10 mS cm−1 at 20 °C) and highest power density (325.7 mW cm−2 at 60 °C) because of the wide hydrophilic/hydrophobic microphase separation in the membranes that promote the construction of ion transport channels, as confirmed by atom force microscope (AFM) images and the small angle X-ray scattering (SAXS) analyses. Furthermore, the BMImH-PPO samples exhibit good chemical stability (10% and 6% decrease in IEC and conductivity, respectively, in 2 M KOH at 80 °C for 480 h, and a 22% decrease in weight in Fenton's reagent at 60 °C for 120 h), making such cross-linked AEMs potentially applicable in alkaline anion exchange membrane fuel cells.  相似文献   

5.
Anion exchange membranes with enough alkaline stability and ionic conductivity are essential for water electrolysis. In this work, a class of anion exchange membranes (PAES-TMI-x) with dense 1,2,4,5-tetramethylimidazolium side chains based on poly(aryl ether sulfone)s are prepared by aromatic nucleophilic polycondensation, radical substitution and Menshutkin reaction. Their chemical structure and hydrophilic/hydrophobic phase morphology are characterized by hydrogen nuclear magnetic resonance (1H NMR) and atomic force microscope (AFM), respectively. The water uptake, swelling ratio and ionic conductivity for PAES-TMI-x are in the range of 23.8%–48.3%, 8.3%–14.3% and 18.22–96.31 mS/cm, respectively. These AEMs exhibit high alkaline stability, and the ionic conductivity for PAES-TMI-0.25 remains 86.8% after soaking in 2 M NaOH solution at 80 °C for 480 h. The current density of 1205 mA/cm2 is obtained for the water electrolyzer equipped with PAES-TMI-0.25 in 2 M NaOH solution at 2.0 V and 80 °C, and the electrolyzer also has good operation stability at current density of 500 mA/cm2. This work is expected to provide a valuable reference for the selection and design of cations in high-performance AEMs for water electrolysis.  相似文献   

6.
The poly(ether ether ketone) (PEEK) was prepared as organic matrix. ZIF-8 and GO/ZIF-8 were used as fillers. A series of novel new anion exchange membranes (AEMs) were fabricated with imidazole functionalized PEEK and GO/ZIF-8. The structure of ZIF-8, GO/ZIF-8 and polymers are verified by 1H NMR, FT-IR and SEM. This series of hybrid membranes showed good thermal stability, mechanical properties and alkaline stability. The ionic conductivities of hybrid membranes are in the range of 39.38 mS cm?1–43.64 mS cm?1 at 30 °C, 100% RH and 59.21 mS cm?1–86.87 mS cm?1 at 80 °C, 100% RH, respectively. Im-PEEK/GO/ZIF-8-1% which means the mass percent of GO/ZIF-8 compound in Im-PEEK polymers is 1%, showed the higher ionic conductivity of 86.87 mS cm?1 at 80 °C and tensile strength (38.21 MPa) than that of pure membrane (59.21 mS cm?1 at 80 °C and 19.47 MPa). After alkaline treatment (in 2 M NaOH solution at 60 °C for 400 h), the ionic conductivity of Im-PEEK/GO/ZIF-8-1% could also maintain 92.01% of the original ionic conductivity. The results show that hybrid membranes possess the ability to coordinate trade-off effect between ionic conductivity and alkaline stability of anion exchange membranes. The excellent performances make this series of hybrid membranes become good candidate for application as AEMs in fuel cells.  相似文献   

7.
A kind of anion exchange membranes (AEMs) with CC bond end-group crosslinked structure was synthesized successfully. Unlike the traditional aliphatic AEMs, the AEMs were prepared in this work by a strategy to realize the CC bond thermal end-group crosslinking reaction, exhibiting an obvious microphase separation structure and a suitable dimensional stability. The well-defined ion channels constructed in the AEMs guarantee the fast OH conduction, as confirmed via physical and chemical characterization. The conductivity was dramatically enhanced due to the effective ion channels and increased ion exchange capacity. Among the as-prepared AEMs, the PHFB-VBC-DQ-80% AEM has a conductivity of 135.80 mS cm−1 at 80 °C. The single cell based on PHFB-VBC-DQ-80% can achieve a power density of 141.7 mW cm−2 at a current density of 260 mA cm−2 at 80 °C. The AEMs show good thermal stability verified by a thermogravimetric analyzer (TGA). Furthermore, the ionic conductivity of PHFB-VBC-DQ-80% only decreased by 7.1% after being soaked in a 2 M NaOH solution at 80 °C for 500 h.  相似文献   

8.
A new type of symmetrical bis-crown ether is prepared by connecting dibenzo-18-crown-6 ether on both sides of the chromotropic acid, and then grafting the aforementioned bis-crown ether onto polyvinyl alcohol matrix to prepare a series of anion exchange membranes (AEMs), which their have high conductivity and strong alkali stability. These synthesized membranes were named B-CX%-P AEMs (x is the mass percentage of the symmetrical bis-crown ether (B–C)). Then, the chemical structure of aforementioned AEMs were verified by means of 1H NMR, FT-IR and UV. Meanwhile, the OH conductivity, alkaline stability and single cell performance of the synthesized membrane were also investigated. The results revealed that the conductivity of B–C30%-P membrane is the highest at 80 °C (235 mS cm−1), and the power density is also the highest (197 mW cm−2), and the alkali stability of the membrane synthesized in this paper was also improved. The conductivity at 80 °C was only reduced by 4%, which was obtained by immersing the B–C30%-P membrane immersed in 6 mol L−1 KOH solution for 168 h, which the aforementioned results proved that the synthesized membrane in this research had excellent OH conductivity and alkaline stability.  相似文献   

9.
Anion exchange membranes (AEMs) are important energy conversion device for fuel cell applications, where the overall redox reaction happened. Both alkaline stability and ionic conductivity should be considered in the long-term use of fuel cells. In this work, imidazole functionalized polyvinyl alcohol was designed as the functional macromolecular crosslinking agent to fabricate crosslinked AEMs with brominated poly(phenylene oxide) matrix. Benefitting from the macromolecular crosslinked structure, the membranes displayed enhanced ionic conductivity and alkaline stability at elevated temperature. Moreover, membrane with ion exchange capacity of 1.54 mmol/g displayed ionic conductivity of 78.8 mS/cm at 80 °C, and the conductivity could maintain 75% of the initial value after immersion in 1 M NaOH solution at 80 °C for 1000 h. Moreover, a peak power density of 105 mW/cm2 was achieved when the assembled single cell with c-91 was operated at 60 °C. These results indicated that the construction of macromolecular crosslinked AEMs have great potential in the practical application of anion exchange membranes fuel cells.  相似文献   

10.
A novel benzonorbornadiene derivative (BenzoNBD-Bis(Im+Br-Im+I)) grafted by multi-imidazolium cations side-chains combined the rigid alkyl spacer and flexible alkoxy spacer is designed and synthesized. Then, the BenzoNBD-Bis(Im+Br-Im+I) monomer is copolymerized with the epoxy functionalized norbornene monomer (NB-MGE) and norbornene (NB) via ring-opening metathesis polymerization (ROMP) using Grubbs 3rd catalyst. All as-designed triblock copolymer membranes (TBCMs) show a thermal decomposition temperature beyond 310 °C and can well be dissolved in common organic solvents. The self-cross-linked structure of anion exchange membrane (AEM) is confirmed by gel fraction and tensile measurement. The water uptake and swelling ratio of TBCMs and AEMs are also measured. Major properties required for AEMs such as ion exchange capacity (IEC), hydroxide conductivity and alkaline stability are investigated. AEM-9.09 shows a hydroxide conductivity of 100.74 mS cm−1 at 80 °C. Besides, the micro-phase separated morphology of AEM is confirmed by TEM, AFM and SAXS analyses, AEMs formed distinct micro-phase separation. The as-prepared AEM exhibits a peak power density of 174.5 mW cm−2 at 365.1 mA cm−2 tested in a H2/O2 single-cell anion exchange membrane fuel cell (AEMFC) at 60 °C. The newly developed strategy of self-cross-linked multi-imidazolium cations long side-chains triblock benzonorbornadiene copolymer provides an effective method to develop high-performance AEMs.  相似文献   

11.
A series of anion exchange membranes (AEMs) with regionally dense ion clusters are prepared by crosslinking quaternized polysulfone (QPSU) with quaternized branched polyethyleneimine (QBPEI). For the as-prepared QPSU/QBPEI AEMs, the hydrophilic QBPEI forms locally aggregated ion clusters in the QPSU matrix, which can promote the formation of an obvious microphase separation structure in the membrane. The QPSU/QBPEI-3 AEM with an ion exchange capacity of 1.88 meq/g exhibits the best performance, achieving a reasonably high ionic conductivity of 66.14 mS/cm at 80 °C and showing good oxidation stability and alkali resistance. Finally, the maximum power density of a single H2/O2 fuel cell with QPSU/QBPEI-3 AEM reaches 75.34 mW/cm2 at 80 °C. The above results indicate that QBPEI with a dendritic structure and abundant anionic conductive groups has a good application prospect in the preparation of AEMs with locally aggregated ion clusters and microphase separation structures.  相似文献   

12.
In this work, an effective design strategy for anion exchange membranes (AEMs) incorporating ether-bond free and piperidinium cationic groups promote chemical stability. A series of poly (isatin-piperidium-terphenyl) based AEMs were synthesized by superacid catalyzed polymerization reaction, followed by quaternization. The effect of functionalization on the performance of poly (isatin-N-dimethyl piperidinium triphenyl) (PIDPT-x) AEMs was investigated. Highly reactive N-propargylisatin was introduced into the backbone to achieve high molecular weight polymers (ηa = 2.06–3.02 dL g1) leading to robust mechanical properties, as well as modulating 1.78–2.00 mmol g−1 of the ion exchange capacity (IEC) of the AEMs by feeding. Apart from that, the rigid non-ionized isatin-terphenyl segment provides AEMs improved dimensional stability with a swelling ratio of less than 12% at 80 °C. Among them, PIDPT-90 exhibited a higher OH conductivity of 105.6 mS cm−1 at 80 °C. The alkali-stabilized PIDPT-85 AEM was presented, in which OH conductivity retention maintained 85.6% in a 2 M NaOH at 80 °C after 1632 h. Afterward, the direct borohydride fuel cells (DBFC) with PIDPT-90 membrane as a separator showed an open-circuit voltage of 1.63 V and a peak power density of 75.5 mWcm−2 at 20 °C. This work demonstrates the potential of poly (isatin- N-dimethyl piperidinium triphenyl) as AEM for fuel cells.  相似文献   

13.
A new strategy to prepare high-conductivity anion exchange membranes (AEMs) is presented here. A series of phenolphthalein-based poly(arylene ether sulfone nitrile) multiblock AEMs has been synthesized by selectively grafting flexible ionic strings on hydrophilic segments to form ionic regions. Moreover, the phenolphthalein groups are introduced to force chains apart and create additional interchain spacing. In addition, the nitrile groups suspended on main chains are aimed at enhancing the anti-swelling behavior of as-prepared AEMs. Along these processes, well-defined phase separation has been attained, forming excellent ion-transport channels. The effective phase separation has been confirmed by atomic force microscopy. Finally, as-prepared AEMs exhibit a high hydroxide conductivity, ranging from 40.1 to 121.6 mS cm−1 in the temperature range of 30–80 °C, and superior ionic conductivity to IEC ratio at 80 °C. Furthermore, excellent thermal stability and desirable mechanical strength have been rendered by as-prepared AEMs. However, the alkaline stability of as-prepared AEMs requires further optimization.  相似文献   

14.
At present, low conductivity and poor chemical stability are still the biggest challenges in the research on anion exchange membranes (AEMs). Herein, novel nanocomposite AEMs were first constructed by introducing quaternized carbon dots (QCDs) into the imidized polysulfone matrix (Im-PSU). QCDs were synthesized by quaternization of CDs derived from citric acid and ethylenediamine. The physicochemical properties and electrochemical properties of the nanocomposite AEMs were significantly improved due to the introduction of QCDs. It was found that the QCDs can improve the ion transport channel of the nanocomposite AEMs. Compared with pure Im-PSU AEM, the OH conductivity and physicochemical properties of the nanocomposite membranes were enhanced, and the OH conductivity of ImPSU-1.0%-QCDs composite membrane can reach 109.3 mS cm−1 at 80 °C, and 61.2% initial OH conductivity was maintained in 1.0 M NaOH solution for 500 h at 60 °C. Our research proves that the nanofiller with a small size can better improve the performance of composite AEMs, and provide an efficient strategy for future research work in the design and preparation of AEMs.  相似文献   

15.
A series of tunable bis-pyridinium crosslinked PEEK-BiPy-x anion exchange membranes (AEMs) are prepared successfully to improve the “trade-off” between ionic conductivity and alkaline stability. The crosslinking density of bis-pyridinium is optimized to promote microphase separation and guarantee the free volume. All the PEEK-BiPy-x membranes have a distinct microphase separation pattern observed by atomic force microscopy (AFM) and the PEEK-BiPy-x membranes also display adequate thermal, mechanical and dimensional stability. Impressively, the PEEK-BiPy-0.5 membrane exhibits maximum tensile strength (58.53 MPa) and highest IEC of 1.316 mmol·g?1. Meanwhile, its hydroxide conductivity reaches up to 70.86 mS·cm?1 at 80 °C. Besides, great alkaline stability of PEEK-BiPy-0.5 membrane is obtained with conductivity retention of 91.74% after 1440 h in 1 M NaOH solution, owing to the crosslinked structure of the AEMs and steric effect of bis-pyridinium cations. Overall, the PEEK-BiPy-x membranes possess potential applications in AEMs.  相似文献   

16.
Anion exchange membranes (AEMs) have emerged as crucial functional materials in various electrochemical device, such as fuel cell. Both the mechanical property and ionic conductivity play important roles in AEMs. Herein, a series of semi-interpenetrating polymer network AEMs are prepared by introducing flexible polyvinyl alcohol to the rigid photo-crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) network. Such strategy endows AEM with tunable composition and mechanical property. Among these AEMs, membrane with an IEC of 1.46 mmol/g shows the highest mechanical strength of 30.8 MPa and a relatively lower swelling ratio, as well as the highest hydroxide conductivity. Importantly, the alkaline stability of these AEMs has been improved, 66.5% of the hydroxide conductivity is maintained after treatment in 1 M NaOH at 80 °C for 1000 h. Tentative assembly of H2/O2 fuel cell at 60 °C with this AEM displays a peak power density of 78 mW/cm2. All the results demonstrate that sIPN structure is a promising way to enhance the mechanical property, ionic conductivity, and the alkaline stability of AEMs for the future application in AEMFCs.  相似文献   

17.
Low-cost biopolymer chitosan has received considerable attention in the field of anion exchange membranes (AEMs) because it can be easily quaternized and avoids the carcinogenic chloromethylation step. Simultaneously increasing the ionic conductivity and improving mechanical properties of quaternized chitosan (QCS) is key for its high-performance application. In this study, new composite AEMs consisting of QCS and functionalized carbon nanotubes (CNTs) were prepared. CNTs were coated with a thick silica layer onto which high-density quaternary ammonium groups were then grafted. The insulator silica coating effectively prohibits electron conduction among nanotubes and the grafted –NR3+ provides new OH conductive sites. Incorporating 5 wt% functionalized CNTs into the matrix enhanced ionic conductivity to 42.7 mS cm−1 (80 °C) which was approximately 2 times higher than that of pure QCS. The effective dispersion of CNTs and appropriate interfacial bonding between nanofiller and QCS improved the mechanical properties of AEMs, including both the strength and toughness of the composite membranes. An alkaline direct methanol fuel cell equipped with the composite membrane (5% functionalized CNTs loading) produced an maximum power density of 80.8 mW cm−2 (60 °C), which was 57% higher than that of pure QCS (51.5 mW cm−2). This study broadens the application of natural polymers and provides a new way to design and fabricate composite AEMs with both improved mechanical properties and electrochemical performance.  相似文献   

18.
A novel strategy was proposed to construct a bicontinuous hydrophilic/hydrophobic micro-phase separation structure which is crucial for high hydroxide conductivity and good dimensional stability anion exchange membranes (AEMs). A semi-flexible poly (aryl ether sulfone) containing a flexible aliphatic chain in the polymer backbone with imidazolium cationic group was synthesized by the polycondensation of bis(4-fluorophenyl) sulfone and the self-synthesized 4,4′-[butane-1,4-diylbis(oxy)] diphenol followed by a two-step functionalization. The corresponding membranes were prepared by solution casting. More continuous hydroxide conducting channels were formed in the semi-flexible polymer membranes compared with the rigid based ones as demonstrated by TEM. As a result, given the same swelling ratio, hydroxide conductivity of the semi-flexible polymer membrane was about 2-fold higher than the one of the rigid polymer based membrane (e.g., 45 vs. 22 mS cm?1 with the same swelling ratio of 24% at 20 °C). The highest achieved conductivity for the semi-flexible polymer membranes at 60 °C was 93 mS cm?1, which was much higher those of other random poly (aryl ether sulfone) based imidazolium AEMs (27–81 mS cm?1). The single cell employing the semi-flexible polymer membrane exhibited a maximum power density of 125 mW cm?2 which was also higher than those for other random poly (aryl ether sulfone) based imidazolium AEMs (16–105.2 mW cm?2).  相似文献   

19.
A new approach is presented here for constructing higher-performance anion exchange membranes (AEMs) by combining block-type and comb-shaped architectures. A series of quaternization fluorene-containing block poly (arylene ether nitrile ketone)s (QFPENK-m-n) were synthesized by varying the length of hydrophobic segment as AEMs. The well-designed architecture, which involved grafting comb-shaped C10 long alkyl side chains onto the block-type main chains, formed efficient ion-transport channels, as confirmed by atomic force microscopy. As a result, the AEMs showed high hydroxide conductivities in the range of 34.3–102.1 mS⋅cm−1 from 30 to 80 °C at moderate ion exchange capacities (IECs). Moreover, the hydrophobic segment with nitrile groups also exhibited a profound anti-swelling property for the AEMs, resulting in ultralow swelling ratios ranging from 4.7% to 7.1% at 30 °C and 7.5%–9.8% at 80 °C, as well as superb conductivity-to-swelling ratios at 80 °C. In addition, the AEMs displayed good mechanical properties, thermal and oxidative stability, and optimizable alkaline stability.  相似文献   

20.
In order to improve the performance of anion exchange membrane (AEMs) as the core component of alkaline fuel cell, a novel pentamethyl-contained phenolphthalein multi-arm monomer is synthesized. The highly imidazolium-functionalized poly (arylene ether ketone) membrane (Im-PEK-x) are prepared by introducing 1,2-dimethylimidazole as hydrophilic segments. The monomer, polymer and anion exchange membranes are confirmed by 1H NMR spectra. The well-defined micro-phase separated structure of membranes is conducive to ion transport and the structure is investigated by TEM and SAXS. The imidazolium-functionalized membranes (Im-PEK-0.8) exhibits high ionic conductivity (0.148 S/cm at 80 °C). The tensile strength of Im-PEK-0.8 membrane is 30.06 MPa. Furthermore, after immersing in 60 °C, 2 M NaOH solution for 240 h, the ionic conductivity remains 0.092 S/cm for Im-PEK-0.8. The 1,2-dimethylimidazole enhance alkaline stability by steric effect of the substituent group at the C2 position. All these results indicate that this is a new method to enhance conductivity and stability performance of AEMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号