首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a method for the parallel operation of inverters in an ac-distributed system is proposed. This paper explores the control of active and reactive power flow through the analysis of the output impedance of the inverters and its impact on the power sharing. As a result, adaptive virtual output impedance is proposed in order to achieve a proper reactive power sharing, regardless of the line-impedance unbalances. A soft-start operation is also included, avoiding the initial current peak, which results in a seamless hot-swap operation. Active power sharing is achieved by adjusting the frequency in load transient situations only, owing to which the proposed method obtains a constant steady-state frequency and amplitude. As opposed to the conventional droop method, the transient response can be modified by acting on the main control parameters. Linear and nonlinear loads can be properly shared due to the addition of a current harmonic loop in the control strategy. Experimental results are presented from a two-6-kVA parallel-connected inverter system, showing the feasibility of the proposed approach  相似文献   

2.
This paper presents a novel control strategy for parallel inverters of distributed generation units in an AC distribution system. The proposed control technique, based on the droop control method, uses only locally measurable feedback signals. This method is usually applied to achieve good active and reactive power sharing when communication between the inverters is difficult due to its physical location. However, the conventional voltage and frequency droop methods of achieving load sharing have a slow and oscillating transient response. Moreover, there is no possibility to modify the transient response without the loss of power sharing precision or output-voltage and frequency accuracy. In this work, a great improvement in transient response is achieved by introducing power derivative-integral terms into a conventional droop scheme. Hence, better controllability of the system is obtained and, consequently, correct transient performance can be achieved. In addition, an instantaneous current control loop is also included in the novel controller to ensure correct sharing of harmonic components when supplying nonlinear loads. Simulation and experimental results are presented to prove the validity of this approach, which shows excellent performance as opposed to the conventional one.  相似文献   

3.
The active and reactive load distribution between n paralleled single-phase uninterruptible power supply (UPS) inverters is equalized by virtue of n-1 load-sharing control loops. The approach permits the construction of UPS systems of any desired power rating at maximum utilization of the power components. The method of harmonic cancellation decreases the switching frequency of the power devices while maintaining good dynamic performance. The design details of a 45 kVA UPS inverter system with 150% steady-state overload capability are presented. The performance under various operating conditions is illustrated by oscillograms  相似文献   

4.
This paper presents a robust control technique applied to modular uninterruptible power-supply (UPS) inverters operating in parallel. When compared to conventional proportional–integral (PI) control, the proposed technique improves the response of the output voltage to load steps and to high distorted output currents, reducing the distortion of the output voltage. Furthermore, an excellent distribution of currents between modules is achieved, resulting in fine power equalization between the inverters on stream. The crossover frequency of the different loop gains involved is moderate, so that robustness to variations of the operation point and to modeling uncertainties is achieved. A comparative study with a two-loop conventional PI control scheme is presented. Experimental results on a 1-kVA modular online UPS system confirm the viability of the proposed scheme.   相似文献   

5.
This paper presents the analysis and design of a multiple feedback loop control scheme for single-phase voltage-source uninterruptible power supply (UPS) inverters with an L-C filter. The control scheme is based on sensing the current in the capacitor of the load filter and using it in an inner feedback loop. An outer voltage feedback loop is also incorporated to ensure that the load voltage is sinusoidal and well regulated. A general state-space averaged model of the UPS system is first derived and used to establish the steady-steady quiescent point. A linearized small signal dynamic model is then developed from the system general model using perturbation and small-signal approximation. The linearized system model is employed to examine the incremental dynamics of the power circuit and select appropriate feedback variables for stable operation of the closed-loop UPS system. Experimental verification of a laboratory model of the UPS system under the proposed closed-loop operation is provided for both linear and nonlinear loads. It is shown that the control scheme offers improved performance measures over existing schemes, It is simple to implement and capable of producing nearly perfect sinusoidal load voltage waveform at moderate switching frequency and reasonable size of filter parameters. Furthermore, the scheme has excellent dynamic response and high voltage utilization of the DC source  相似文献   

6.
分析了两种单电压环的无差拍控制方案。通过分析,比较了两者的异同,指出单纯保证输出电压无差拍控制方案的劣势。并详细分析了能够同时实现两个状态无差拍控制的单电压环控制方案。该方案利用输出电压反馈进行极点配置,实现系统对给定无差拍跟踪;利用负载电流进行前馈控制,实现系统对扰动的抑制。并针对控制策略进行了仿真,验证了方案的可行性。  相似文献   

7.
Uninterruptible power supplies (UPSs) have been used in many installations for critical loads that cannot afford power failure or surge during operation. It is often difficult to upgrade the UPS system as the load grows over time. Due to lower cost and maintenance, as well as ease of increasing system capacity, the parallel operation of modularized small-power UPS has attracted much attention in recent years. In this paper, a new scheme for parallel operation of inverters is introduced. A multiple-input–multiple-output state-space model is developed to describe the parallel-connected inverters system, and a model-predictive-control scheme suitable for paralleled inverters control is proposed. In this algorithm, the control objectives of voltage tracking and current sharing are formulated using a weighted cost function. The effectiveness and the hot-swap capability of the proposed parallel-connected inverters system have been verified with experimental results.   相似文献   

8.
Parallel processing inverter system   总被引:5,自引:0,他引:5  
A novel method of instantaneous voltage and power balance control of a parallel processing inverter system is proposed. It consists of a high-speed switching PWM (pulsewidth modulated) inverter with an instantaneous current minor loop controller, a voltage major loop controller, and a power balance controller. This system realizes the following functions with only one inverter: constant AC output voltage control with reactive power control, active filtering to absorb load current harmonics, DC voltage and current control as AC-to-DC converter, and uninterruptible power supply (UPS) for stand-alone operation. This system covers a wide application range, including UPS systems, new energy systems, and active filters with voltage control functions  相似文献   

9.
A technique of parallel connection of power devices by using current sharing reactors for pulsewidth modulated (PWM) inverters is reported in this paper. The proposed technique not only increases the current capacity but also decreases the output harmonic contents. The output voltage waveforms of the proposed inverter have certain voltage levels during their half cycles, thus it is anticipated that it will be difficult to analyze the output waveforms. For such waveforms, a frequency analysis approach is described, whose results are verified by experiments  相似文献   

10.
In common dc-link parallel-inverter systems, the amplitudes and the phase angles of three-phase inverters can be separately adjusted to control power sharing. However, when the space-vector modulation technique is used in a parallel-inverter system without the output transformers, the zero-sequence circulating current will occur. This paper provides detailed analysis of the zero-sequence circulating current and proposes a novel dual-modulator compensation technique for eliminating the zero-sequence circulating current caused by power-sharing control systems. Results obtained from both simulation and experiments confirmed the performance and the effectiveness of the proposed compensation method.   相似文献   

11.
This paper explores a new configuration for modular DC/DC converters, namely, series connection at the input, and parallel connection at the output, such that the converters share the input voltage and load current equally. This is an important step toward realizing a truly modular power system architecture, where low-power, low-voltage, building block modules can be connected in any series/parallel combination at input or at output, to realize any given system specifications. A three-loop control scheme, consisting of a common output voltage loop, individual inner current loops, and individual input voltage loops, is proposed to achieve input voltage and load current sharing. The output voltage loop provides the basic reference for inner current loops, which is modified by the respective input voltage loops. The average of converter input voltages, which is dynamically varying, is chosen as the reference for input voltage loops. This choice of reference eliminates interaction among different control loops. The input-series and output-parallel (ISOP) configuration is analyzed using the incremental negative resistance model of DC/DC converters. Based on the analysis, design methods for input voltage controller are developed. Analysis and proposed design methods are verified through simulation, and experimentally, on an ISOP system consisting of two forward converters.  相似文献   

12.
This paper describes a novel method of robust (insensitive to system parameter variations and load current changes) and fast digital control for an uninterruptible power supply (UPS) with a three-phase PWM inverter. The purpose of this paper is to propose a method by which characteristics better than those by conventional methods are obtained using an algorithm simpler than that of conventional methods. The experiments show that the purpose is achieved and the proposed method offers a total harmonic distortion of 0.6% of the output voltage waveform at a full nonlinear load. The analysis shows that the stability of the method is sufficient. Three features of the method are: (a) a capacitor current observer for stabilization and a disturbance observer for robustness are used to compensate the time lag by the computation and the disturbances, in a minor loop of the capacitor current through an inductor-capacitor filter of the inverter; (b) new models of the inverter and the disturbances are established to simplify these observers; and (c) the output voltage control loop can be designed easily and exactly because the minor loop realizes a rapid and robust control of the current  相似文献   

13.
A new, high performance, low cost power converter system architecture is proposed. The system consists of a main converter and a multifunctional load conditioner. The main converter deals with most of the power flow running at a low switching frequency. The load conditioner is designed at a much lower power level running at a high-switching frequency. The load conditioner can (1) act like a current source and inject harmonic currents required by the load; (2) act like an active resistor to provide damping to the main converter; and (3) for three-phase inverters, decouple the coupling sources in the main inverter model in the rotating coordinates to make the control loop design for the main inverter much easier. The concept has been proved by simulation and experimental results on a 150 kW high performance three-phase utility power supply prototype. The proposed system configuration can be used in high power DC-DC converters, inverters, PFC and UPS applications  相似文献   

14.
A new control technique is presented for the parallel connection of distributed generation inverters. The proposed control technique is based on a modification of the power angle droop control method, and uses only locally measured feedback signals. An improvement in transient response is achieved because the real and imaginary components of the output current are used when deriving the power angle droop controller. The method achieves good active and reactive power sharing and minimises circulating current between parallel connected units. Improved transient response is obtained whilst maintaining power sharing precision or output voltage and frequency accuracy. Simulation and experimental results validate that performance is better than that attained with conventional droop-based approaches.  相似文献   

15.
This paper presents a novel power factor correction technique for single-phase boost type AC-to-DC converters in continuous conduction mode. Instead of using the inductor current or switching device current, in this paper, the diode current in the boost converter is used to formulate the duty ratio of the switch in a special way which makes the input current sinusoidal and in phase with the input voltage. To improve the dynamic performance and minimize the input current harmonic components, a new double-injection compensation method is employed in the voltage feedback loop. The power factor corrector has the following advantages: (1) operation with constant switching frequency; (2) elimination of input voltage sensing, error amplifier in the current loop and multiplier in the output voltage feedback loop; (3) minimal total harmonic distortion in the input current; (4) fast dynamic response of the output voltage loop; and (5) simple implementation of the control circuit. The principles of operation of the proposed control scheme are explained. Simulation and experimental results are presented to verify the feasibility of the control strategy  相似文献   

16.
This article presents the complete design of a low power voltage source inverter (VSI) dedicated for a UPS system. The analysis of the rectangular PWM-AC voltage spectrum allows for a choice of the basic architecture of the inverter. Output filter parameters were calculated to reduce the maximum amplitude of the output VSI voltage harmonics for the steady-state inverter mode. The choice of the feedback loop type was based on a discussion of the inverter output impedance using a continuous model of the inverter. The parameters of the inner loop digital control for the discrete inverter model were calculated using the Coefficient Diagram Method. The influence of the step load was modelled. The time constant of the inverter closed loop system was selected to ensure sufficient system robustness. An outer feedback loop with a plug-in repetitive controller, simplified owing to the properties of the PID/CDM inner loop control, was introduced to eliminate the periodic disturbances generated by the non-linear rectifier load and the deadtime influence. The experimental verification of the design method is presented.  相似文献   

17.
An accurate nonlinearity compensation technique for voltage source inverter (VSI) inverters is presented in this paper. Because of the nonlinearity introduced by the dead time, turn-on/off delay, snubber circuit and voltage drop across power devices, the output voltage of VSI inverters is distorted seriously in the low output voltage region. This distortion influences the output torque of IM motors for constant V/f drives. The nonlinearity of the inverter also causes 5th and 7th harmonic distortion in the line current when the distributed energy system operates in the grid-connected mode, i.e., when the distributed energy system is parallel to a large power system through the VSI inverter. Therefore, the exact compensation of this nonlinearity in the VSI inverter over the entire range of output voltage is desirable. In this paper, the nonlinearity of VSI inverter output voltage and the harmonic distortion in the line current are analyzed based on an open-loop system and a L-R load. By minimizing the harmonic component of the current in a d-axis and q-axis synchronous rotating reference frame, the exact compensation factor was obtained. Simulations and experimental results in the low frequency and low output voltage region are presented.  相似文献   

18.
In this paper, the analysis and design of a modular three-phase ac-to-dc converter using single-phase isolated CUK rectifier modules is discussed based on power balance control technique. This paper analyzes the operation of a modular converter as continuous-conduction-mode power factor correction (CCM-PFC). Design equations, as well as an average small-signal model of the proposed system to aid the control loop design are derived. It is used to obtain the inductor current compensator, thus the output impedance and audio susceptibility become zero, and therefore, the output voltage of the converter presented in this paper is independent of the variations of the dc load current and the utility voltage. The control strategy consists of a single output voltage loop and three-inductor current calculator. The main objective of the proposed system is to reduce the number of stages and improve dynamic response of dc bus voltage for distributed power system. The proposed scheme offers simple control strategy, flexibility in three-phase delta or star-connected, simpler design, fast transient response, good inductor current sharing, and power factor closed to unity. Both simulation and experimental results are presented. They are in agreement with the theoretical analysis and experimental work.   相似文献   

19.
裴静 《微电子学》2020,50(5):626-631
分析了死区时间对逆变器输出电压谐波的影响,结合逆变器在旋转坐标系上的数学模型,提出了多旋转坐标系下死区谐波电压补偿策略,即在旋转坐标系下在线检测死区谐波电压,通过谐波电压的反馈控制对死区谐波电压进行消除。该策略无需对桥壁电流极性进行判断即能达到消除死区电压的目的。最后,在工频逆变器上通过实验验证了该补偿方法对谐波电压检测以及死区谐波电压消除的有效性。  相似文献   

20.
The performance characteristics of the rectangular wave delta modulation (RWDM) scheme for uninterruptible power supply (UPS) applications is investigated. Normalized characteristic curves that show the effect of various modulator parameters on the frequency spectrum of the inverter output voltage are obtained using discrete Fourier transform (DFT) and harmonic analysis techniques. The performance of a single-phase half-bridge inverter with an LC filter is discussed, and experimental results are provided to validate the predicted and simulated results. It is shown that the harmonic content of the inverter output waveform can be controlled through the control of the modulator parameters  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号