首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
用转矩流变仪对聚氯乙烯/废胶粉热塑性弹性体的加工温度、加工转速、交联剂用量、增塑剂的种类与用量以及增容剂用量进行了调节。结果表明,用流变仪研究加工配方可以确立加工的最佳工艺参数。选择加工温度在160℃、加工转速为50 r/m in时,安全加工时间适中,且能耗较低。采用促进剂TT硫化体系,当氧化锌用量(质量分数,下同)为4%~6%、促进剂TT为1.6%~2.4%、硫黄为1.6%~2.4%时,材料的性能较好。选用邻苯二甲酸二丁酯为增塑剂,共混体系的流动性能较好,加工能耗较低,且增塑剂用量为24%~30%较为适宜。选用丁腈橡胶作增容剂,当其用量为4.90%~7.91%时,有利于提高聚氯乙烯与废胶粉之间的界面结合,用量过大会使共混体系的加工性能大幅度下降。  相似文献   

2.
聚氯乙烯/丁腈胶粉共混型热塑性弹性体   总被引:8,自引:0,他引:8  
将聚氯乙烯与废丁腈胶粉经高温机械共混,制备了动态交联的共混型热塑性弹性体。讨论了共混比,硫化体系及其用量,废胶粉品种(丁腈胶粉,轮胎胶粉)等因素对热塑性弹性体性能的影响,同时将聚氯乙烯/丁腈胶粉与聚氯乙烯/轮胎胶粉制备的共混型热塑性弹性体的性能进行了比较。结果表明,以聚氯乙烯100份(质量份,下同),邻苯二甲酸二辛酯50份,丁腈胶粉80份,丁腈橡胶20份,过氧化二异丙苯0.5份,氧化锌5份及适量其他助剂可制得综合性能较好的共混型热塑性弹性体。扫描电镜结果显示该共混型热塑性弹性体具有较好的相容性。  相似文献   

3.
Dynamically vulcanized poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) thermoplastic elastomers (TPEs) were prepared with a Brabender plasticorder coupled with a mixing attachment by melt mixing. The blends were prepared at 150°C at a rotor speed of 50 rpm. Curatives concentration was steadily increased from 0 to 1 phr in order to study the vulcanization effect on the plasticized blend. The effectiveness of the dynamic vulcanization was indicated by the Brabender plastograms. The properties investigated include mass swell, tensile strength, elongation at break, modulus at 100% elongation (M100), tear strength, and hardness. The PVC/ENR samples were exposed to two types of environments, namely, air and oil under otherwise identical conditions. The effect of oil and thermooxidative aging on the mechanical properties were characterized at room temperature and 100°C. It was found that at ambient temperature the samples immersed in oil possessed similar properties to those that were exposed to air. Significant enhancement in mechanical properties were observed for both environments at 100°C. This has been attributed to the increase in crosslink density which was manifested by a steady reduction in percent mass swell with increased sulfur loading. The excellent mechanical behavior of the PVC/ENR TPEs even after immersing the samples in oil at 100°C has provided a good indication of the oil resistance of the materials. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1357–1366, 1998  相似文献   

4.
A crosslinking system consisting of 1,1‐di‐t‐butylperoxy‐3,3,5‐trimethyl cyclohexane peroxide and trimethylolpropane trimethacrylate (TMPTMA) has been used to introduce crosslinks into unplasticized poly(vinyl chloride) (PVC). The influence of the concentration of both reagents has been investigated, and crosslinking monitored by determination of the remaining sample weight after Soxhlet extraction with tetrahydrofuran. The system used (i.e., 0.5–2.0 phr peroxide with 5 to 15 phr TMPTMA) has been shown to be effective for crosslinking PVC. Gel contents of 30–40% have been obtained, premature crosslinking during processing is largely avoided, but thermal stability still needs to be improved. Considerable improvements in elevated temperature mechanical properties can be attained using an appropriate TMPTMA/peroxide concentration. The best tensile properties were obtained with 0.5 phr peroxide and 15 phr TMPTMA. Observed increases in Tg, also achievable with only 0.5 phr peroxide, but only slightly dependent on TMPTMA concentration, represent a useful increase in service temperature for the resulting compound. Lower peroxide levels may be adequate to achieve property improvements. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2657–2666, 2000  相似文献   

5.
The grafting of a mercaptoalkyltrialkoxysilane onto an activated poly(vinyl chloride) (PVC) paste resin with subsequent hydrolytic crosslinking has been studied. The resins were prepared by copolymerization of vinyl chloride monomer and glycidylmethacrylate (GMA). The grafting of a mercaptosilane was carried out during gelation of the plastisol. In this step the formation of a chemical network was avoided. By steaming at 120°C for 30 min the grafted samples crosslinked. The gel yield increased with increasing fraction of GMA and up to a given level with the fraction of the mercaptosilane. When using a resin of PVC homopolymer no crosslinking occurred. The silane grafted and crosslinked samples were found to have satisfactory thermal stability. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:849–853, 1998  相似文献   

6.
Dynamically vulcanized poly(vinyl chloride)–epoxidized natural‐rubber thermoplastic elastomers (PVC–ENR TPEs) were prepared using a semi‐EV vulcanization system. The compounds were melt‐mixed, and the rheological behavior was evaluated. The effect of curatives concentration on the rheological behavior using the shear dependence of viscosity and the activation energy for viscous flow was evaluated. Viscoelastic behavior was also investigated with the Monsanto MDR 2000. The parameters studied include the elastic modulus at maximum torque, the loss peak at maximum torque, and their ratio (tan δ). The data obtained were correlated with the material properties, such as hardness and resilience. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2886–2893, 1999  相似文献   

7.
使用自制交联剂2-二正丁基胺基4,6-二硫醇均三嗪(DB)制备了热塑性弹性体PVC/CR,并对用DB交联PVC、CR共聚物的交联特性、橡塑比、交联剂用量对材料的性能影响进行了考察,结果表明:由于共交联剂DB能使PVC与CR产生共交联作用,改善了两者的相容性,可以制备性能良好的PVC/CR-TPE。最优橡塑比PVC/CR以25/75左右为宜,交联剂用量以2~3份为宜。  相似文献   

8.
The optimum conditions for crosslinking rigid poly(vinyl chloride) with trimethylolpropane trimethacrylate (TMPTMA) and peroxide have been examined. The extent of crosslinking was measured by determining gel content by Soxhlet extraction in tetrahydrofuran. Mechanical properties were measured at 130°C and dynamic viscoelastic measurements were carried out to detect changes in the glass transition temperature (Tg). It was found that 15 phr of TMPTMA and 0.3 phr of peroxide were optimum concentrations for maximizing the extent of crosslinking, tensile strength, and Tg. The lower molding temperature of 170°C was preferred to minimize thermal degradation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2904–2909, 2007  相似文献   

9.
The present study evaluates the impact of blending organosolv and kraft lignins, which are natural polymer by‐products in the pulp and paper industry, with plasticized poly(vinyl chloride) (PVC) in flooring formulations. Also examined is the impact of replacing dioctyl phthalate, a PVC industry general‐purpose plasticizer, with diethylene glycol dibenzoate (Benzoflex 2‐45), tricresyl phosphate (Lindol), or alkyl sulfonic phenyl ester (Mesamoll) in these formulations. The influence of the different types of lignins and plasticizers on the processibility, thermal, and mechanical properties of the blends is discussed. These properties demonstrate that partial replacement of PVC (20 parts) with different lignins is feasible for some formulations that can be successfully used as matrices for a high level of calcium carbonate filler in flooring products. In addition, the data demonstrate that the presence of certain plasticizers, which interfere with the intramolecular interactions existing in lignins, may allow the lignin molecules to have more molecular mobility. The morphology and the properties of PVC plasticized lignin blends are strongly influenced by the degree and mode of the lignin plasticization and its dispersion within the PVC matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2732–2748, 2006  相似文献   

10.
To improve the antifouling property of poly(vinyl chloride) (PVC) membranes, a series of poly(methacrylic acid) grafted PVC copolymers (PVC‐g‐PMAA) with different grafting degree were synthesized via one‐step atom transfer radical polymerization process utilizing the labile chlorines on PVC backbones followed by one‐step hydrolysis reaction. PVC/PVC‐g‐PMAA blend membranes with different grafting degree and copolymer content were prepared by nonsolvent induced phase separation method. The surface chemical composition, surface charge, membrane structures, wettability, permeability, separation performances and the fouling resistance of blend membranes were carefully investigated. The results indicated that the PMAA chains were segregated towards the surface and the membranes were endowed with negative charge. The hydrophilicity and permeability of the blend membranes were obviously improved. Furthermore, the antifouling ability especially at neutral or alkaline environments was also significantly increased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42745.  相似文献   

11.
The requirements for PVC suspension resin have changed considerably in the last few years, so much so that few companies have products on their ranges that are more than 4 or 5 years old. The suspending agent has a crucial influence on the morphology of the resin, so the changes in resin characteristics have largely been achieved by changes in the suspending agent systems. After a brief review of the mechanism of PVC suspension polymerisation, the properties of polymers made using PVOH suspending agents are related to changes in the latter. The effect of variations in PVAc degree of hydrolysis and viscosity are related to changes in surface tension. Methods of achieving higher porosity by using low hydrolysis co-suspending agents are described. It is shown that higher bulk densities can be achieved by delayed addition of the PVOH. Levels of conjugated unsaturation and copolymer distributions are also shown to have important influences.  相似文献   

12.
Five different multifunctional acrylic monomers (trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol pentaacrylate) were photopolymerized alone or in a matrix of linear poly(vinyl chloride) (PVC) with 2,2‐dimethyl‐2‐hydroxyacetophenone as a photoinitiator. The course of photopolymerization was estimated with Fourier transform infrared spectroscopy. The amount of insoluble gel formed during photopolymerization was determined gravimetrically. The crosslinked polymerization of pure monomers was much faster than that in the presence of PVC. However, the efficiency of the reaction was higher when it was carried out in a PVC blend because of the higher mobility of the propagating macroradicals. The influence of the monomer structure and functionality on the polymerization course was examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3725–3734, 2002  相似文献   

13.
The mechanical properties of the poly (vinyl chloride) (PVC) and poly (glycidyl methacrylate) [poly (GMA)] blend system and the PVC and poly (hydroxyethyl methacrylate) [poly (HEMA)] blend system and their crosslinked films were investigated. At the same time, the mechanical properties for the corresponding graft copolymers such as PVC-g-GMA, PVC-g-HEMA, and their crosslinked films were also investigated in this study. The results showed that the tensile strengths for PVC–poly (GMA) blend systems were higher than those for PVC-g-GMA graft copolymer, and the tensile strengths for PVC-g-HEMA were higher than those for PVC-poly (HEMA) blend systems. However, the mechanical properties for the PVC–poly (GMA) blend system were not affected by the crosslinking of the blend system, but those for PVC-poly (HEMA) and their graft copolymers decreased with an increase of the equivalent ratio ([NCO]/[OH]) of the crosslinker. Finally, the surface hydrophilicity of the PVC-g-HEMA graft copolymer and PVC-poly (HEMA) blends were also assessed through measuring the contact angle. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 307–319, 1998  相似文献   

14.
Blends of poly(methyl methacrylate) (PMMA) and copoly(ether‐ester) (COPE) elastomer have been prepared in different compositions namely, 95/5, 90/10, 85/15, and 80/20 wt % (PMMA/COPE), by melt mixing technique using twin screw extruder. The influence of COPE content on the mechanical properties especially impact strength, thermal behavior, and chemical resistance of PMMA have been investigated. The impact strength of the PMMA/COPE blends for all the compositions were found to be improved remarkably as compared to the virgin PMMA without affecting the other mechanical properties significantly. Various composite models, such as series model, parallel model, Halpin‐Tsai equation, and Kerner's model have been used to fit the experimental mechanical properties. The effect of chemical and thermal ageing on the performance of the PMMA/COPE blends was also studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
In this study, the influence of chlorinated polyethylene (CPE) and acrylonitrile–butadiene–styrene copolymer (ABS) on the mechanical properties of poly(vinyl chloride) (PVC)/CPE and PVC/ABS hybrids were examined. The experimental results show that the toughness of the hybrids could be modified greatly by the introduction of CPE or ABS. The microstructure and impact surfaces of the blends were investigated by scanning electron microscopy and transmission electron microscopy. ABS dispersed in the form of particles or agglomerates in the PVC matrix, and CPE tended to disperse as a net structure. In the tensile test, ABS initiated crazes as stress concentrators to toughen the PVC matrix, whereas CPE, with the PVC matrix together, caused a yield deformation by shear stress to form a shear band. The formation of crazes and shear bands benefited the toughening of PVC, but to the different extent. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 916–924, 2003  相似文献   

16.
The process of stabilization of a poly(vinylchloride) elemental sulfur in thermal and thermooxidative destruction conditions is investigated. The high stabilizing efficiency of elemental sulfur is revealed at the destruction of plasticized poly(vinylchloride) compared with the efficiency of phenolic antioxidants. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

17.
18.
Blends of poly(vinyl chloride) (PVC) with varying contents of plasticizer and finely ground powder of waste nitrile rubber rollers were prepared over a wide range of rubber contents through high‐temperature blending. The effects of rubber and plasticizer (dioctyl phthalate) content on the tensile strength, percentage elongation, impact properties, hardness, abrasion resistance, flexural crack resistance, limiting oxygen index (LOI), electrical properties, and breakdown voltage were studied. The percentage elongation, flexural crack resistance, and impact strength of blends increased considerably over those of PVC. The waste rubber had a plasticizing effect. Blends of waste plasticized PVC and waste nitrile rubber showed promising properties. The electrical properties and LOI decreased with increasing rubber and plasticizer content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1552–1558, 2004  相似文献   

19.
The effects of three plasticizers and two plasticizer concentrations on the topography and soiling of poly (vinyl chloride) (PVC) were studied. Palmitic acid and triolein were chosen to represent solid and liquid soils. The feasibility of using infrared spectroscopy to quantify the amount of soil on PVC was examined. The structure of the solid model soil on plasticized PVC was studied with optical microscopy and atomic force microscopy. Palmitic acid formed two different structures on the PVC surface. Both the type and concentration of the plasticizer influenced the structure of the oily soil on plasticized PVC. The wetting of plasticized PVC with the liquid oily soil was compared to wetting with water through the measurement of the contact angles. Plasticized PVC was hydrophobic and oleophilic. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
热塑性聚氨酯与聚氯乙烯共混研究进展   总被引:5,自引:1,他引:5  
叶成兵  张军 《中国塑料》2003,17(10):1-7
综述了热塑性聚氨酯与聚氯乙烯共混改性研究进展,重点介绍了热塑性聚氨酯与聚氯乙烯共混物的相容性、共混方式、热塑性聚氨酯的类型和组分、助剂和第三组分聚合物等对共混物性能的影响及其应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号