首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viability of thermomechanical recycling of post‐consumer milk pouches (blend of low‐density polyethylene (LDPE) and linear low‐density polyethylene (LLDPE)) and its scope for suitable engineering applications were investigated. The effects of blending with ethylene‐propylene‐diene monomer (EPDM) rubber and subsequent curing using dicumyl peroxide (DCP) on the macromolecular structure and properties of recycled polyethylene (PE) blends were studied. The crosslinking efficiency of recycled PE/EPDM blends and possible thermooxidative degradation of recycled polymer upon peroxide curing was assessed using torque and gel content measurements along with infrared spectroscopic analysis. Both the torque and gel content of the blends varied with DCP crosslinking reactions and also were affected by oxidative degradation. In view of the electrical application area of this recycled blend material, the dielectric breakdown strength and volume resistivity were measured. The mechanical performance and thermal stability of recycled PE/EPDM blends improved with progressive crosslinking by DCP but deteriorated somewhat at higher DCP dose. Scanning electron microscopy showed good interface bonding between recycled polymer and dispersed EPDM phase in the cured blends compared to the non‐cured blends. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
Dynamic vulcanization was studied in terms of the change in α‐relaxation temperatures of the LDPE matrix, morphology, and mechanical properties of LDPE/ozonolysed NR blends which were vulcanized at various blend ratios and with different curing systems, i.e., peroxide and sulfur systems. The ozonolysed NR with M w = 8.30 × 105 g mol−1 and M n = 2.62 × 105 g mol−1, prepared by the in situ ozonolysis reaction of natural rubber latex, was used in this study. The significant change in the α‐relaxation temperature of LDPE in the LDPE/ozonolysed NR, dynamically vulcanized using the sulfur system, suggested that sulfur vulcanization of the blend gave a higher degree of crosslink density than using peroxide and corresponded with the improved damping property and homogenous phase morphology. However, the peroxide cured blends of LDPE/ozonolyzed NR gave more improvement of tensile strength and elongation at break than the sulfur cured system. Furthermore, the mechanical properties of tensile strength, elongation at break, and damping were improved by increasing the ozonolyzed natural rubber content in both DCP and sulfur cured blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
A tetra‐component blend, consisting of low‐density polyethylene (LDPE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS), was studied as a model system of commingled plastic wastes (LDPE/PVC/PP/PS, mass ratio: 70/10/10/10). Effects of chlorinated polyethylene (CPE), ethylene–propylene–diene monomer (EPDM), styrene–butadiene–styrene (SBS), and their mixture (CPE/EPDM/SBS, mass ratio: 2/2/2) on the mechanical properties and morphology of the system were investigated. With addition of several elastomers and their mixture, the tensile strength of the blends decreased slightly, although both the elongation at break and the impact strength increased. Among these elastomers, EPDM exhibited the most significant impact modification effect for the tetra‐component blends. SBS and the mixture have a good phase‐dispersion effect for the tetra‐component blend. By adding a crosslinking agent [dicumyl peroxide (DCP)], the mechanical properties of the tetra‐component blends also increased. When either SBS or the mixture was added to the blend together with DCP, the probability that the crosslinking agent (DCP) would be at the interface improved because of the phase‐dispersion effect of SBS. Therefore, more co‐crosslinked products will form between LDPE and other components. Accordingly, remarkable improvement of the interfacial adhesion and hence the mechanical properties of the tetra‐component blends occurred. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2947–2952, 2001  相似文献   

4.
A new conducting blend from natural rubber (NR), low‐density polyethylene (PE), and Bi‐based superconductor (BSCCO) nanoparticles was successfully formulated. Blends were prepared by means of an open two‐roll mill for five ratios (100/0, 90/10, 80/20, 70/30, and 60/40 NR/LDPE). The microstructures of the blends were examined in terms of scanning electron microscopy (SEM), bound rubber (BR), cross‐linking density (CLD), and Mooney viscosity (M100). The mechanical properties like hardness (H) shore A, tensile strength (TS), and elongation at break (EB) of the blends were studied. The applicability of the blends as double thermistors, i.e., positive and negative coefficient of resistivity (PTCR/NTCR), was examined. The applicability of the blend for antistatic charge dissipation was also tested. Finally, electromagnetic interference response of conducting NR/PE‐filled BSCCO in the frequency range 1–12 GHz has been studied. Shielding effectiveness of the conducting blends in the microwave range 8–12 GHz shows an attenuation of 44–60 dB for PE ≤10 wt%. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

5.
Zinc butyl xanthate [Zn(bxt)2] was prepared in the laboratory. The effect of this xanthate with zinc diethyl dithiocarbamate (ZDC) on the vulcanization of natural rubber (NR), polybutadiene rubber (BR), and NR/BR blend has been studied at different temperatures. The amounts of Zn (bxt)2 and ZDC in the compounds were optimized by varying the amount of ZDC from 0.75 to 1.5 phr and Zn (bxt)2 from 0.75 to 1.5 phr. The cure characteristics were also studied. HAF filled NR, BR, and NR/BR blend compounds were cured at different temperatures from 60 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density and elongation at break, compression set, abrasion resistance, etc. were evaluated. The results show that the mechanical properties of 80NR/20BR blends are closer to that of NR vulcanizates, properties of 60NR/40BR blends are closer to BR vulcanizates, while the 70NR/30BR blends show an intermediate property. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3516–3520, 2007  相似文献   

6.
Rubber–rubber blends are used widely in industry, for example, in tire manufacture. It is often difficult to characterize interfaces in such rubber–rubber blends quantitatively because of the similarity in the chemical structure of the component rubbers. Here, a new method was suggested for the measurement of the weight fraction of the interface in rubber–rubber blends using modulated‐temperature differential scanning calorimetry (M‐TDSC). Quantitative analysis using the differential of the heat capacity, dCp/dT, versus the temperature signal from M‐TDSC allows the weight fraction of the interface to be calculated. As examples, polybutadiene rubber (BR)–natural rubber (NR), BR–styrene‐co‐butadiene rubber (SBR), SBR–NR, and nitrile rubber (NBR)–NR blend systems were analyzed. The interfacial content in these blends was obtained. SBR is partially miscible with BR. The cis‐structure content in BR has an obvious effect on the extent of mixing in the SBR–BR blends. With increasing styrene content in the SBR in the SBR–BR blends, the interface content decreases. NR is partially miscible with both BR and SBR. The NBR used in this research is essentially immiscible with NR. The maximum amount of interface was found to be at the 50:50 blend composition in BR–NR, SBR–BR, and SBR–NR systems. Quantitative analysis of interfaces in these blend systems is reported for the first time. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1791–1798, 2000  相似文献   

7.
The co‐crosslinked products and the entrapping phenomenon that may exist in a poly(vinyl chloride)/low density polyethylene/dicumyl peroxide (PVC/LDPE/DCP) blend were investigated. The results of selective extraction show that unextracted PVC was due to not being co‐crosslinked with LDPE but being entrapped by the networks formed by the LDPE phase. SBR, as a solid‐phase dispersant, can promote the perfection of networks of the LDPE phase when it is added to the PVC/LDPE blends together with DCP, which leads to more PVC unextracted and improvement of the mechanical properties of PVC/LDPE blends. Meanwhile, the improvement of the tensile properties is dependent mainly on the properties of the LDPE networks. Finally, the mechanism of phase dispersion–crosslinking synergism is presented. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1296–1303, 2003  相似文献   

8.
The viscoelastic properties of the blends of chloroprene rubber (CR) with ethylene–propylene–diene monomer rubber (EPDM), polybutadiene rubber (BR), and natural rubber (NR) at different temperature were studied using rubber processing analyzer (RPA). Mooney viscosities of compounds were measured and tight milling and sheeting appearance were observed on a two‐roll mill. The results showed that Mooney viscosities and the elastic modulus of the blends decreased with the increase of the temperature from 60 to 100°C. And the decreasing trends of pure CR, pure NR, and CR/NR blend compounds were more prominent than that of pure EPDM, pure BR, CR/EPDM, and CR/BR blend compounds. For CR/EPDM blend compounds, the decreasing trend became slower with the increase of EPDM ratio in the blend. Compared with pure CR, pure NR and CR/NR blend compounds, pure EPDM, pure BR compounds, and the blend compounds of CR/EPDM and CR/BR showed less sensibility to temperature and they were less sticky to the metal surface of rolls and could be kept in elastic state at higher temperature, easy to be milled up and sheeted. At the same blend ratio and temperature, the property of tight milling of the blends decreased in the sequence of CR/EPDM, CR/BR, and CR/NR. With the increase of EPDM, BR, or NR ratio in CR blends, its property of tight milling was improved. POLYM. COMPOS., 28:667–673, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
The purpose of this article is that the silica‐modified SBR/BR blend replaces natural rubber (NR) in some application fields. The styrene‐butadiene rubber (SBR) and cis‐butadiene rubber (BR) blend was modified, in which silica filler was treated with the r‐Aminopropyltriethoxysilane (KH‐550) as a coupling agent, to improve mechanical and thermal properties, and compatibilities. The optimum formula and cure condition were determined by testing the properties of SBR/BR blend. The properties of NR and the silica‐modified SBR/BR blend were compared. The results show that the optimum formulawas 80/20 SBR/BR, 2.5 phr dicumyl peroxide (DCP), 45 phr silica and 2.5 mL KH‐550. The best cure condition was at 150°C for 25 min under 10 MPa. The mechanical and thermal properties of SBR/BR blend were obviously modified, in which the silica filler treated with KH‐550. The compatibility of SBR/BR blend with DCP was better than those with benzoyl peroxide (BPO) and DCP/BPO. The crosslinking bonds between modified silica and rubbers were proved by Fourier transform infrared analysis, and the compatibility of SBR and BR was proved by polarized light microscopy (PLM) analysis. The silica‐modified SBR/BR blend can substitute for NR in the specific application fields. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

10.
Natural rubber (NR) was blended with chlorosulfonated polyethylene (CSM) with various formulation and blend ratios (NR/CSM: 80/20 –20/80, wt/wt). Rubber blends were prepared by using a two‐roll mill and vulcanized in a compression mold to obtain the 2 mm‐thick sheets. Tensile properties, tear resistance, thermal aging resistance, ozone resistance, and oil resistance were determined according to ASTM. Compatible NR/CSM blends are derived from certain blends containing 20–30% CSM without adding any compatibilizing agent. Tensile and tear strength of NR‐rich blends for certain formulations show positive deviation from the rule of mixture. Thermal aging resistance depends on formulation and blend ratio, while ozone and oil resistance of the blends increase with CSM content. Homogenizing agents used were Stuktol®60NS and Epoxyprene®25. Stuktol®60NS tends to decrease the mechanical properties of the blends and shows no significant effect on blend morphology. Addition of 5–10 phr of epoxidized natural rubber (ENR, Epoxyprene® 25) increases tensile strength, thermal aging resistance, and ozone resistance of the blends. It is found that ENR acts as a compatibilizer of the NR/CSM blends by decreasing both CSM particle size diameter and α transition temperature of CSM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 127–140, 2006  相似文献   

11.
EPDM/NR并用胶的复合交联   总被引:3,自引:0,他引:3  
采用硫黄硫化体系和过氧化物(硫化剂DCP)硫化体系对EPDM/NR并用胶实施复合交联,研究并用比和复合交联体系对胶料的硫化特性、物理性能和耐热老化性能的影响。结果表明,在大部分并用比下,复合交联可以改善胶料的硫化特性;在硫化剂DCP和助交联剂TAIC的用量均为2份、EPDM/NR/ENR并用比为30/68.5/1.5时,并用胶的物理性能优良;以NR为主的并用胶在复合交联时硫化剂DCP和助交联剂TAIC的用量宜取1~2份。  相似文献   

12.
Silicone rubber/ethylene vinyl acetate (SR/EVA) rubber mixes with different ratios were prepared by using dicumyl peroxide (DCP) and benzoyl peroxide (BP) as curing agents. The vulcanization characteristics such as cure kinetics, activation energy, and cure rate of the blends were analyzed. The effects of blend ratio and curing agents on the mechanical properties such as stress–strain behavior, tensile strength, elongation at break, tear strength, relative volume loss, hardness, flex crack resistance, and density of the cured blends have been investigated. Almost all the mechanical properties have been found to be increased with increase in EVA content in the blends particularly in DCP‐cured systems. The increment in mechanical properties of the blends with higher EVA content has been explained in terms of the morphology of the blends, attested by scanning electron micrographs. Attempts have been made to compare the experimental results, from the evaluation of mechanical properties, with relevant theoretical models. The aging characteristics of the cured blends were also investigated and found that both the DCP‐ and BP‐cured blends have excellent water and thermal resistance. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1069–1082, 2006  相似文献   

13.
The NR/BR blend compound formulations for tire sidewall applications contain a set of stabilizers added to prevent degradation mainly due to oxygen, ozone, and heat. 6PPD is the most effective and widely used antiozonant in tire compounds, but is a highly staining material causing a surface discoloration of the tire sidewall. Incorporation of 30 phr EPDM into blends of NR/BR improves the ozone resistance to the required level, without the need of 6PPD. The first two parts of this series have described a reactive processing technique applied to enhance the covulcanization and blend homogeneity, together with their characterization. In the present article, the properties of the NR/BR/EPDM blends prepared by both reactive and straight mixing are tested in comparison with those of equivalent conventional NR/BR compounds. The reactive NR/BR/EPDM blend vulcanizates show excellent tensile strength, elongation at break, tear strength, fatigue‐to‐failure, and ozone resistance in both static and dynamic conditions. The properties are equivalent or even superior to those of the conventional NR/BR tire sidewall compounds. The simple straight mixed NR/BR/EPDM blend vulcanizates distinctively possess inferior mechanical properties compared to those of the reactive mix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2555–2563, 2007  相似文献   

14.
ABSTRACT

This paper discusses some properties of the polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM)/natural rubber (NR) blends, such as tensile properties, heat resistance, gel content, and morphology. Dicumyl peroxide (DCP) and N,N-m-phenylene bismaleimide (HVA-2) and their combination were applied in PP/EPDM/NR blends as cross-link agents. In terms of tensile properties, the combination of DCP with HVA-2 shows the highest tensile strength and elongation at break in all PP/EPDM/NR blend ratios compared to similar blends, except with DCP or HVA-2 alone. The addition of HVA-2 produced blends with good heat resistance, while the combination of DCP with HVA-2 shows the highest gel content dealing with the cross-links formation. SEM micrographs from the surfaces extraction of the blends support that the cross-links have occurred during dynamic vulcanization process.  相似文献   

15.
In this investigation, the effects of blending with ethylene–propylene–diene terpolymer and subsequent dynamic curing with sulfur on the macromolecular structure and properties of pure low‐density polyethylene and high‐density polyethylene were studied. The crosslinking efficiency of polyethylene‐based ethylene–propylene–diene terpolymer blends upon dynamic curing was assessed with torque and gel content measurements. The curing of dispersed ethylene–propylene–diene terpolymer in a polyethylene matrix improved both the mechanical and thermomechanical properties as a result of the formation of a crosslink structure in the rubber phase. In view of the electrical applications of this cured blend material, the volume resistivity was measured. The thermal stability of vulcanized polyethylene/ethylene–propylene–diene terpolymer blends was found to be superior to that of unvulcanized blends. In scanning electron microscopy analysis, good interface bonding between the polyethylene matrix and dispersed ethylene–propylene–diene terpolymer was observed for the cured blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
研究了7种不同硫化体系对EPDM/ACM共混胶性能的影响。结果表明,采用DCP/TCY硫化体系硫化的共混胶,具有合适的正硫化时间和交联密度,拉伸强度接近最大值,为17.2MPa,撕裂强度最大,为38.5N/mm,压缩永久变形最小,为30.6%,耐热空气老化性能较好。DCP/TCY并用硫化体系为EPDM/ACM共混胶的最佳硫化体系。  相似文献   

17.
The effect of EVA functionalized with mercapto groups (EVALSH) on the compatibilization of SBR and EVA copolymer blends was investigated in vulcanized systems based on sulfur or dicumyl peroxide (DCP). The presence of EVALSH resulted in an improvement of the tensile properties, indicating the reactive compatibilizing effect of this compound. The best mechanical performance was achieved with the sulfur‐curing system for both compatibilized and noncompatibilized blends. The blend systems were also analyzed by scanning electron microscopy, differential scanning calorimetry, and dynamic‐mechanical analysis. The crystallinity of the EVA phase was significantly affected by the presence of the EVALSH, whereas no substantial change was detected on the damping properties or the glass transition temperature of the SBR phase. Considering the aging properties, the presence of EVALSH increases the thermal stability of the blends vulcanized with DCP. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 239–249, 2002  相似文献   

18.
The migration of sulfur from natural rubber (NR) compound to the ground waste ethylene‐propylene‐diene monomer (EPDM) rubber phase may have caused the cure incompatibility between these two rubbers. Optimization of accelerators had been adopted to overcome the cure incompatibility in NR/(R‐EPDM) blends as well as to get increased curative distribution. In this study, blends of NR and R‐EPDM were prepared. The effect of accelerator type on curing characteristics, tensile properties, and dynamic mechanical properties of 70/30/NR/(R‐EPDM) blend was investigated. Four types of commercial accelerators were selected [ie, N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , N‐cyclohexyl‐benzothiazyl‐sulfenamide (CBS), tetramethylthiuram disulfide, and 2‐mercaptobenzothiazol]. It was found that the tensile strength of the blends cured in the presence of CBS was relatively higher than the other three accelerators. Scanning electron micrographs of CBS‐cured NR/(R‐EPDM) blends exhibited more roughness and cracking path, indicating that higher energy was required toward the fractured surface. The high crosslinking density observed from the swelling method could be verified from the storage modulus (E′) and damping factor (tan δ) where (tetramethylthiuram disulfide)‐cured NR/(R‐EPDM) blends provided a predominant degree of crosslinking followed by N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , CBS, and 2‐mercaptobenzothiazol, respectively. J. VINYL ADDIT. TECHNOL., 21:79–88, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
研究了不同反式-1,4-聚异戊二烯(TPI)用量及补强与填充体系对TPI/天然橡胶(NR)/顺丁橡胶(BR)并用胶力学性能、动态性能和热老化性能的影响。结果表明,当TPI/NR/BR的质量比为15.0/42.5/42.5时,混炼胶外表光滑,硬度适中;硫化胶的硫化特性变化不大,在保持基本配方硫化胶力学性能的基础上,动态力学性能明显提高。当加入4~8份白炭黑时,并用胶的撕裂强度、定伸应力提高,滚动阻力、压缩生热降低,是一种较理想的全钢子午线轮胎胎侧胶配方。  相似文献   

20.
Structure and mechanical properties were studied for the binary blends of a linear low density polyethylene (LLDPE) (ethylene‐1‐hexene copolymer; density = 900 kg m−3) with narrow short chain branching distribution and a low density polyethylene (LDPE) which is characterized by the long chain branches. It was found by the rheological measurements that the LLDPE and the LDPE are miscible in the molten state. The steady‐state rheological properties of the blends can be predicted using oscillatory shear moduli. Furthermore, the crystallization temperature of LDPE is higher than that of the LLDPE and is found to act as a nucleating agent for the crystallization of the LLDPE. Consequently, the melting temperature, degree of crystallinity, and hardness of the blend increase rapidly with increases in the LDPE content in the blend, even though the amount of the LDPE in the blend is small. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3153–3159, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号