首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Kiya 《Sadhana》1993,18(3-4):531-552
A three-dimensional vortex blob method was applied to calculate several vortex motions: the deformation of pseudo-elliptic vortex rings, the jet issuing from the pseudo-elliptic nozzle into flow of uniform velocity, the unsteady separated flow around a circular disk with an angle of attack, and the interaction of several vortex rings which approximately reproduced the Kolmogorov spectrum. In the first three cases, the viscous diffusion of vorticity was included. The pseudo-elliptic vortex rings experienced axis switching and split into a few deformed vortex rings. Rolling-up vortices in the pseudo-elliptic jet had a symmetric arrangement in the minor-axis plane and an antisymmetric arrangement in the major-axis plane in the developing region; further downstream, the vortices were arranged antisymmetrically in both planes. The wake behind the disk normal to the main flow reproduced the spiral and columnar modes of instability. A problem in the three-dimensional vortex method is that vorticity tends to diverge at a stage of evolution of the vortex motions. An approximate method of avoiding the divergence of vorticity is proposed.  相似文献   

2.
研究了燃焰法沉积金刚石薄膜的质量均匀性,指出反应气体流量比是影响金刚石薄膜质量均匀性的主要因素,基片表面沉积区径向温度梯度使金刚石膜晶粒尺寸偏离沉积中心距离的增加而减小。  相似文献   

3.
ABSTRACT

We study the spiral spectrum of anomalous vortex beams propagating through a turbulent atmosphere. Based on the Huygens–Fresnel integral and the Rytov approximation, the integral expression and then the analytical expression for the spiral spectrum of anomalous vortex beams in the weakly turbulent atmosphere are derived. The capacity of wireless optical links using the anomalous vortex beam is obtained. It is found that the spiral spectrum of the anomalous vortex beam is less affected by turbulence than that of the Laguerre-Gaussian beam. And thus, the information capacity of wireless optical links using the anomalous vortex beam is larger than that using the Laguerre-Gaussian beam. The influence of beam order, wavelength, topological charge, propagation distance, refractive index structure constant and the radius of receiver aperture on spiral spectrum is investigated. These results contribute to reduce the disturbing effects of atmospheric turbulence on the orbital angular momentum of the vortex beam.  相似文献   

4.
从拉盖尔-高斯涡旋光束表达式出发,基于瑞利衍射理论,通过研究涡旋光束在大气湍流中传输时的旋转相干函数的变化规律,总结了涡旋光束在大气湍流中传输时各轨道角动量之间的串扰情况,使用了拓扑荷数探测概率描述串扰规律,并推导了拓扑荷数探测概率的解析表达式。研究了涡旋光束通过湍流后的拓扑荷数的分布情况,并将结果与涡旋光束通过大气随机相位屏的数值仿真结果进行了对比,给出了理论与仿真的拓扑荷数的探测概率随湍流强度以及初始涡旋光束拓扑荷数大小的关系图对比,验证了推导的拓扑荷数探测概率解析表达式的正确性。通过该表达式可进一步研究大气湍流与涡旋光束相互作用从而影响涡旋光束轨道角动量散射的本质,为涡旋光束的空间光通信中选择合适的拓扑荷数间隔,以及在不同湍流强度下选择合适束腰大小以减少串扰带来的误码率提供了理论依据。  相似文献   

5.
《Advanced Powder Technology》2020,31(10):4253-4274
In this study, the flamelet/progress-variable (FPV) approach was applied to a large eddy simulation of a pulverized coal jet flame. The FPV approach considers the characteristics of the pulverized coal flame, e.g., non-adiabatic system and several types of fuel streams, via additional representative variables. First, the applicability of the FPV approach to a turbulent flame with pulverized coals was confirmed through a comparison of the numerical solutions and experimental data. In this study, the pure pilot case was also investigated to clarify the effects of pulverized coals on the flame. The flame structure changes significantly upon the injection of pulverized coals, and the flame index suggests the coexistence of premixed and diffusion combustion modes even in the downstream region. In particular, the combustion mode fluctuates with time in the middle region of the flame. The fuel gas released from the pulverized coals should increase in this region; therefore, the release and combustion behavior of the volatile matter must be involved in the combustion mode variation. The evaluation of the combustion modes of fuel gas in the coal flame is useful for the design and optimization of pulverized coal combustors with next-generation technologies.  相似文献   

6.
Structural optimization methods based on the level set method are a new type of structural optimization method where the outlines of target structures can be implicitly represented using the level set function, and updated by solving the so‐called Hamilton–Jacobi equation based on a Eulerian coordinate system. These new methods can allow topological alterations, such as the number of holes, during the optimization process whereas the boundaries of the target structure are clearly defined. However, the re‐initialization scheme used when updating the level set function is a critical problem when seeking to obtain appropriately updated outlines of target structures. In this paper, we propose a new structural optimization method based on the level set method using a new geometry‐based re‐initialization scheme where both the numerical analysis used when solving the equilibrium equations and the updating process of the level set function are performed using the Finite Element Method. The stiffness maximization, eigenfrequency maximization, and eigenfrequency matching problems are considered as optimization problems. Several design examples are presented to confirm the usefulness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this work we explore the applicability of the RBF method to laminar flame propagation modeling. This problem is an interesting challenge for the RBF method since it involves the solution of two coupled nonlinear parabolic equations in temperature and mass fraction. We show the suitability of the method by solving unsteady flame propagation problems in one and two dimensions. We also apply the method to compute the shape of an anchored flame using both equispaced and non-equispaced nodes.  相似文献   

8.
This paper presents essential numerical procedures in the context of the coupled lattice Boltzmann (LB) and discrete element (DE) solution strategy for the simulation of particle transport in turbulent fluid flows. Key computational issues involved are (1) the standard LB formulation for the solution of incompressible fluid flows, (2) the incorporation of large eddy simulation (LES)‐based turbulence models in the LB equations for turbulent flows, (3) the computation of hydrodynamic interaction forces of the fluid and moving particles; and (4) the DE modelling of the interaction between solid particles. A complete list is provided for the conversion of relevant physical variables to lattice units to facilitate the understanding and implementation of the coupled methodology. Additional contributions made in this work include the application of the Smagorinsky turbulence model to moving particles and the proposal of a subcycling time integration scheme for the DE modelling to ensure an overall stable solution. A particle transport problem comprising 70 large particles and high Reynolds number (around 56 000) is provided to demonstrate the capability of the presented coupling strategy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The main purpose of present study is to comprehensively clarify the impact of cylinder vortex stabilizer on fluctuating turbulence structure of a Stairmand cyclone separator on basis of Large Eddy Simulation. The cylinder vortex stabilizer is easy and could be applied to any existing cyclone model without any major replacement. This novel modification in cyclone body is considered to alleviate the negative effect of entrainment of particles from the ash hopper and swing of the vortex end in swirling flow. The numerical simulations were conducted based on Stairmand cyclone separator and three new models with variation of vortex stabilizer length and diameter. The results showed that the cylinder vortex stabilizer could enhance flow instability and improve fluctuating turbulence structure to some extent. It is confirmed that cylinder vortex stabilizer could significantly reduce the tangential velocity in the inner quasi-forced vortex region of the cyclones. Comparing with Stairmand cyclone, the swirling first and second peak frequency of cyclone model with vortex stabilizer (Length L/D: 6.5, diameter d/D: 0.12) have been confirmed to get considerable reduction of 11.54% and 10.86%, respectively. This modified cyclone model is comparatively better for enhancement of flow stability, providing about 18.4% maximum reduction of normalized flow angle, 24.8% of rotational kinetic energy in dust collector and 14.2% in the main body of cyclone.  相似文献   

10.
Abstract

The development of the formation and vortex pairing process in a two‐dimensional shear flow and the associated passive scalar (mass concentration or energy) transport process was numerically simulated by using the Vortex‐in‐Cell (VIC) Method combined with the Upwind Finite Difference Method. The visualized temporal distributions of passive scalars resemble the vortex structures and the turbulent passive scalar fluxes showed a definite connection with the occurrence of entrainment during the formation and pairing interaction of large‐scale vortex structures. The profiles of spatial‐averaged passive scalar ø, turbulent passive scalar fluxes, u'ø’ and v'ø’, turbulent diffusivity of mean‐squared scalar fluctuation, v'ø‘ 2, mean‐squared turbulent passive scalar fluctuation, √ø‘ 2, skewness, and flatness factor of the probability density function of scalar fluctuation ø at three different times are calculated. With the lateral dimension scaled by the momentum thickness and the velocity scaled by the velocity difference across the shear layer, these profiles were shown to be self‐preserved. The probability density function of turbulent scalar fluctuation was found to be asymmetric and double‐peaked.  相似文献   

11.
Experimental studies of the length of vertical isolated burning flames with hydrogen and methane outflow from cylindrical nozzles of diameter 2, 3, 5 and 10 mm into the atmosphere at Re0 = 100–6800 have been made. The data obtained have been approximated by simple calculated dependences. The application of various methods for recording the length of a luminous flame (visual, black-and-white photography, video and digital cameras) has made it possible to not only explain the discrepancies between sizes but also record (at short exposures) elementary bending bright cylindrical jets creating, when superimposed on the another, one known spindle-shaped form of the flame. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 2, pp. 301–307, March–April, 2009.  相似文献   

12.
Within the context of the sintering process simulation, this paper proposes a numerical strategy for the direct simulation of the matter transport by surface diffusion, in two and three dimensions. The level set formulation of the surface diffusion problem is first established. The resulting equations are solved by using a finite element method. A stabilization technique is then introduced, in order to avoid the spurious oscillations of the grain boundary that are a consequence of the dependence of the surface velocity on the fourth‐order derivative of the level set function. The convergence and the accuracy of this approach are proved by investigating the change in an elliptic interface under surface diffusion. Cases in direct relation with the sintering process are analyzed besides: sintering between two grains of the same size or of two different sizes. Finally, 3D simulations involving a small number of particles show the ability of the proposed strategy to deal with strong deformations of the grain surface (formation of necks) and to access directly important parameters such as the closed porosity rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

This paper presents (1) a brief overview of the mathematical models used in the numerical study of turbulent flows; (2) a K‐? model of turbulence; and (3) extensions of the K‐? model to account for some of the effects of compressibility, low Reynolds number, streamline curvature, and preferential stress dissipation.  相似文献   

14.
In this paper, we propose a three‐dimensional (3D) grayscale‐free topology optimization method using a conforming mesh to the structural boundary, which is represented by the level‐set method. The conforming mesh is generated in an r‐refinement manner; that is, it is generated by moving the nodes of the Eulerian mesh that maintains the level‐set function. Although the r‐refinement approach for the conforming mesh generation has many benefits from an implementation aspect, it has been considered as a difficult task to stably generate 3D conforming meshes in the r‐refinement manner. To resolve this task, we propose a new level‐set based r‐refinement method. Its main novelty is a procedure for minimizing the number of the collapsed elements whose nodes are moved to the structural boundary in the conforming mesh; in addition, we propose a new procedure for improving the quality of the conforming mesh, which is inspired by Laplacian smoothing. Because of these novelties, the proposed r‐refinement method can generate 3D conforming meshes at a satisfactory level, and 3D grayscale‐free topology optimization is realized. The usefulness of the proposed 3D grayscale‐free topology optimization method is confirmed through several numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
基于角谱衍射理论,利用Johnson传递系统数值模拟非高斯粗糙面,研究了拉盖尔-高斯涡旋光束通过随机非高斯粗糙表面的场分布特性。在分析了非高斯粗糙面方向自相关长度、峰度、偏斜以及均方根粗糙度对涡旋光束场分布影响的基础上,研究了涡旋光束通过随机粗糙表面后光束光强分布变化时的均方根粗糙度取值范围,并通过实验,将实验数据与仿真结果进行了对比分析。结果表明:当非高斯粗糙面方向相关长度为20 mm,偏斜为0.001,峰度为6,均方根粗糙度大于0.12 mm时,拉盖尔-高斯光束透过随机表面的光强分布不再保持空心分布,对应的相位奇点消失。  相似文献   

16.
The level set equation is a non‐linear advection equation, and standard finite‐element and finite‐difference strategies typically employ spatial stabilization techniques to suppress spurious oscillations in the numerical solution. We recast the level set equation in a simpler form by assuming that the level set function remains a signed distance to the front/interface being captured. As with the original level set equation, the use of an extensional velocity helps maintain this signed‐distance function. For some interface‐evolution problems, this approach reduces the original level set equation to an ordinary differential equation that is almost trivial to solve. Further, we find that sufficient accuracy is available through a standard Galerkin formulation without any stabilization or discontinuity‐capturing terms. Several numerical experiments are conducted to assess the ability of the proposed assumed‐gradient level set method to capture the correct solution, particularly in the presence of discontinuities in the extensional velocity or level‐set gradient. We examine the convergence properties of the method and its performance in problems where the simplified level set equation takes the form of a Hamilton–Jacobi equation with convex/non‐convex Hamiltonian. Importantly, discretizations based on structured and unstructured finite‐element meshes of bilinear quadrilateral and linear triangular elements are shown to perform equally well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
An algorithm which couples the level set method (LSM) with the extended finite element method (X‐FEM) to model crack growth is described. The level set method is used to represent the crack location, including the location of crack tips. The extended finite element method is used to compute the stress and displacement fields necessary for determining the rate of crack growth. This combined method requires no remeshing as the crack progresses, making the algorithm very efficient. The combination of these methods has a tremendous potential for a wide range of applications. Numerical examples are presented to demonstrate the accuracy of the combined methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
An algorithm to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure is proposed. The material interfaces are implicitly represented by level sets which are identified by applying regularization using total variation penalty terms. The inverse problem is solved iteratively and the extended finite element method is used for the analysis of the structure in each iteration. The formulation is presented for three-dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material sub-domains in the presence of higher noise levels.  相似文献   

19.
Although the phenomenon of stress concentration is of paramount importance to engineers when they are designing load‐carrying structures, stiffness is often used as the solely concerned objective or constraint functional in the studies of optimal topology design of continuum structures. Sometimes this will lead to optimal designs with severe stress concentrations that may be highly responsible for the fracture, creep, and fatigue of structures. The aim of the present work is to develop some effective numerical techniques for designing stiff structures with less stress concentrations. This is achieved by introducing some specific stress measures, which are sensitive to the existence of high local stresses, in the problem formulation and resolving the corresponding optimization problem numerically in a level set framework. Our study indicates that with use of the proposed numerical schemes, some intrinsic difficulties in stress‐related topology optimization of continuum structures can be overcome in a natural way. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号