首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition of the blends and the curing temperature affect the morphology of the blends and the phase separation mechanism. The phase separation mechanism depends on the viscosity of medium at the initial stage of phase separation determined by the amount of thermoplastics and the curing temperature, and is closely related with the final morphology. When the homogeneous bisphenol A dicyanate (BADCy)/polysulfone (PSF) blends with low content of PSF (less than 10 wt %) were cured isothermally, the blends were phase separated by nucleation and growth (NG) mechanism to form the PSF particle structure. On the other hand, with more than 20 wt % of PSF content, the BADCy/PSF blends were phase separated by spinodal decomposition (SD) to form the BADCy particle structure. With about 15 wt % of PSF content, the blends were phase separated by SD and then NG to form a combined structure having both the PSF particle structure and the BADCy particle structure. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 33–45, 1999  相似文献   

2.
The cure reaction and phase separation mechanism of a cyanate ester‐cured epoxy and its blends with polyphenylene oxide (PPO) were studied. An autocatalytic mechanism was observed for the epoxy and its blends. The reaction rate of the blends was higher than that of the neat epoxy at initial stage; however, the reached conversion decreased with PPO content. FTIR analysis revealed that the cyanate functional group reactions were accelerated by adding PPO and indicated that several coreactions have occurred. This was caused by the reaction of cyanate ester with the PPO reactive chain ends. But at a later stage of cure, the reaction could not progress further due to diffusional limitation of PPO. To understand the relationship between the cure kinetics and phase separation of the blends, the morphology of the blends during cure was examined. When the homogeneous epoxy/PPO blends with low PPO content (10 phr) were cured isothermally, the blends were separated by nucleation and growth (NG) mechanism to form the PPO particle structure. But at high PPO content (30 phr), the phase separation took place via spinodal decomposition (SD). SD is favored near critical concentration and high cure rate system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1139–1145, 2006  相似文献   

3.
Phase separation rate during porous membrane formation by immersion precipitation was investigated by light scattering in a polyimide/N‐Methylpyrrolidone (NMP)/water system. In the light scattering measurement, plots of scattered intensity against scattered angle showed maxima in all cases, which indicated that phase separation occurred by a spinodal decomposition (SD). Characteristic properties of the early stage of SD, such as an apparent diffusion coefficient Dapp and an interphase periodic distance Λ, were obtained. The growth process of Λ was also followed by light scattering. The growth rate had the same tendency as Dapp when water content in the nonsolvent bath and the polymer concentration in the cast solution were changed. The pore size of the final membrane increased with decreasing water content, which was opposite to the tendency of Λ growth rate. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 292–296, 2003  相似文献   

4.
The effects of molecular weight of polysulfone (PSF) on the morphology of bisphenol‐A dicyanate (BADCy)/PSF blends were studied. Because the viscosity of the blend increased and the miscibility between BADCy and PSF decreased with the increase of PSF molecular weight, these two competing effects on the phase‐separation were investigated. It was observed that the effect of viscosity was predominant: the viscosity of the blends at the onset point of phase separation increased with the increase of PSF molecular weight. The phase separation mechanism depends on the viscosity of the blends at the onset point of phase separation and determines the morphology of the blends. Because the increasing viscosity with increasing the molecular weight of PSF suppressed the nucleation and growth even with 10 phr of PSF content, phase separation occurred through spinodal decomposition to form the combined morphology having both PSF particle structure and BADCy particle structure. The combined morphology and the BADCy particle structure were obtained with a smaller amount of high molecular weight PSF content. This indicates that the viscosity of the blends at the onset point of phase separation is the critical parameter that determines the morphology of the blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 921–927, 2000  相似文献   

5.
A high‐temperature thermosetting bisphenol‐A dicyanate, BADCy was modified with polyetherimide, PEI, at various compositions. Phase separation and rheokinetics through curing were studied by optical microscopy, dynamic and isothermal differential scanning calorimetry, and rheological measurements. The PEI phase separated at the early stages of curing, well before gelation, and did not affect the polycyclotrimerization kinetics. The phase structure and thermal properties of the final network were investigated as a function of the PEI content and cure temperature. For this purpose, dynamic mechanical analysis, scanning electron microscopy studies, and thermogravimetrical analysis were carried out. The morphological changes were interpreted in terms of a spinodal decomposition mechanism in the composition range studied. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1037–1047, 2000  相似文献   

6.
Phase diagrams of a series of copolymers of acrylonitrile (AN) and acrylic acid (AAc) were constructed using linearized cloud point correlation. The miscibility region in the phase diagram was found to increase with the increase in AAc content of the copolymers. For various compositions, χ13 (polymer–water interaction parameter) values were estimated by sorption experiment. As the hydrophilic nature of the polymer increased with the increase in the content of acrylic acid, the χ13 interaction parameter was found to decrease from poly(acrylonitrile) homopolymer to its copolymer with 50 mol % acrylic acid (AA50B). The polymer–solvent interaction parameters (χ23) and composition at the critical points for all the polymers were determined by fitting the theoretical bimodal curves to the experimental cloud point curves using Kenji Kamide equations. The polymer composition at the critical point was found to increase by 400% with increasing AAc content. The polymers were solution spun in DMF‐water coagulation bath at 30°C and their protofiber structures were investigated under scanning electron microscopy. The observed morphological differences in protofibers were explained on the changes brought about in the phase separation behavior of the polymer–solvent–nonsolvent systems. The copolymers with higher acrylic acid content could be solution spun into void free homogeneous fibers even at conditions that produced void‐filled inhomogeneous fibers in poly(acrylonitrile) and its copolymers with lower AAc content. The experiments demonstrate the important role of thermodynamics in deciding the protofiber morphology during coagulation process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Phase separation phenomena of polyetherimide (PEI)/solvent/nonsolvent systems were investigated by measuring their precipitation values over the temperature range from 20 to 50°C. The solvents used are N‐methyl‐2‐pyrrolidone (NMP), dimethylacetamide (DMAC), and dimethylformamide (DMF). Nine nonsolvents were employed including water, methanol, ethanol, 1‐propanol, 2‐propanol, acetic acid, propionic acid, ethylene glycol, and diethylene glycol. Based on the measured precipitation values, critical solubility parameters for PEI were calculated, and the partial solubility boundary for PEI was obtained in a two‐dimensional solubility parameter coordinate graph. The relationship between solvent strength and membrane structure was examined using PEI hollow‐fiber membranes prepared from binary polymer solutions containing NMP, DMAC, and DMF as solvents. Water was used both as internal and external coagulants. The cross‐sectional structure and gas permeation properties of these hollow fibers were examined. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1789–1796, 1999  相似文献   

8.
In this work, influence of initial conditions and surface characteristics of porous support layer on structure and performance of a thin film composite (TFC) polyamide reverse osmosis (RO) membrane was investigated. The phase inversion method was used for casting of polysulfone (PSf) supports and interfacial polymerization was used for coating of polyamide layer over the substrates. The effect of PSf concentrations that varied between 16 wt % and 21 wt %, and kind of the solvent (DMF and NMP) used for preparation of initial casting solution were investigated on the properties of the final RO membranes. SEM imaging, surface porosity, mean pore radius, and pure water flux analysis were applied for characterization of the supports. The substrate of the membrane, which synthesized with 18 wt % of PSf showed the most porosity and the synthesized RO membrane had the lowest salt rejection. In case of the solvents, the membranes synthesized with DMF presented better separation performance that can be attributed to their lower thickness and sponge‐like structure. The best composition of support for TFC RO membranes reached 16 wt % PSf in DMF solvent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44444.  相似文献   

9.
In this study, polyvinylchloride (PVC) membranes were prepared through the immersion precipitation method using a mixture of two solvents (tetrahydrofuran (THF) and dimethyl formamide (DMF)), which had different affinities with the nonsolvent (water). Membranes prepared from PVC/THF/water system showed a sponge‐like structure with isolated pores, which were impermeable to water even at a feed pressure of 20 bars, whereas those prepared from PVC/DMF/water exhibited a porous macrovoid containing morphology with a high water flux. The precipitation time and polymer concentration profiles were calculated by using a simple mathematical model and were in good agreement with the experimental findings on PVC/THF/water and PVC/DMF/water systems. By using a mixture of DMF and THF as solvent and changing the mixed solvent composition, membranes with different morphologies from sponge‐like to macrovoid containing were obtained. The membranes showed no water flux below a DMF concentration of 50 wt % and then became increasingly permeable with increasing DMF content in the casting solution. Measurement of the system cloud points showed a linear change of system thermodynamics with variation of the mixed solvent composition. The obtained results showed that although the system thermodynamics could explain the overall behavior of the system, but the local changes such as change of membrane performance from impermeable to permeable at a certain mixed solvent composition could not be explained by the thermodynamics alone. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40206.  相似文献   

10.
For the cure process of tetrafunctional epoxy resin/polysulfone(EP/PSF) blends, we investigated the effect of cure temperature and blend composition on the phase separation behavior by light scattering and the structure development during cure by an optical microscope. The EP/PSF blend without the curing agent was shown to exhibit an LCST-type phase behavior (LCST = 241°C). At the early stage of curing, the EP/PSF blend was homogeneous at the cure temperature. As the cure reaction proceeded, the blend was thrust into a two-phase regime by the LCST depression caused by the increase in a molecular weight of the epoxy-rich phase, and the phase separation took place via a spinodal decomposition (SD) or nucleation and growth (NG) mode, depending on the blend composition and the cure temperature. When cured isothermally at 220°C, the blend exhibited a sea-island morphology formed via the NG mode below 5 wt % PSF content, while the SD mode prevailed above 20 wt % PSF content. At the intermediate composition range, combined morphology with both sea-island and cocontinuous structure was observed. On the other hand, by lowering the cure temperature and/or increasing the content of PSF component, a two-phase structure with a shorter periodic distance was obtained. It seems that the rate of the phase separation is considerable reduced, while that of the cure reaction is not as much. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2233–2242, 1997  相似文献   

11.
The effects of cellulose nanowhiskers (CNWs) and irradiation dose on phase separation behavior as well as rheological and physical properties of Poly vinyl methyl ether (PVME) nanogels are investigated. Interactions between CNWs and polymer chains lead to the dehydration of PVME chains. Increasing the irradiation dose or CNW weight fraction enhances the VPTT, due to the decreased chain mobility. The phase separation behaviors of hybrid and nonhybrid nanogels are investigated at two different quench depths. At the shallow quench depth, the samples phase separate through nucleation and growth (NG) mechanism. However in the case of hybrid nanogels with a higher temperature, as a result of the enhanced dynamic asymmetry induced by the increased quench depth and the interaction of PVME chains with CNWs, the phase separation mechanism changes from NG to viscoelastic phase separation (VPS). The linear rheological behavior of nanogels was well correlated with the evolution of corresponding phase‐separating morphologies. At 40°C, a shoulder appeared in the storage modulus curve in the intermediate frequency range, due to shape relaxation of the droplets formed by NG mechanism. However, a solid‐like behavior was observed due to the existence of a percolated network structure induced by VPS at 60°C. POLYM. ENG. SCI., 59:899–912, 2019. © 2018 Society of Plastics Engineers  相似文献   

12.
《分离科学与技术》2012,47(4):627-646
Abstract

In this study permeation and separation characteristics of dimethylformamide (DMF)/water mixtures were investigated by pervaporation (PV), vapor permeation (VP), and vapor permeation with temperature difference (TDVP) methods using alginate membranes crosslinked with calcium chloride. The effects of membrane thickness (30–90 µm), feed composition (0–100 wt%), operating temperature (30–50°C) on the permeation rates and separation factors were investigated. The permeation rate was found to be inversely proportional to the membrane thickness whereas separation factor increased as the membrane thickness was increased. It was observed that the permeation rates in VP and TDVP were lower than in PV however the highest separation factors were obtained with TDVP method. Alginate membranes gave permeation rates of 0.97–1.2 kg/m2 h and separation factors of 17–63 depending on the operation conditions and the method. In addition, sorption‐diffusion properties of the alginate membranes were investigated at the operating temperature and the feed composition. It was found that the sorption selectivity was dominant factor for the separating of DMF/water mixtures.  相似文献   

13.
Thermally induced phase separation was studied by the light scattering in polypropylene/methyl salicylate system. Data could be well fitted with the linear Cahn theory for spinodal decomposition (SD) in the early stage of phase separation. Characteristic properties of the early stage of SD, such as an apparent diffusion coefficient and an interphase periodic distance, were obtained. The periodic distance ranged from 3 μm to 4 μm. The growth of the phase‐separated structure obeyed power‐law scaling in the later stage, and the structure factor could be scaled into a universal time‐independent form. Domain sizes obtained from the light‐scattering measurements were consistent with the optical microscope measurements. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1028–1036, 2000  相似文献   

14.
The effect of diluents on polymer crystallization and membrane morphology via thermally induced phase separation(TIPS) were studied by changing the composition of the mixed‐diluents systematically, in the system of poly(4‐methyl‐1‐pentene) (TPX)/dibutyl‐phthalate (DBP)/di‐n‐octyl‐phthalate (D‐n‐OP) with TPX concentration of 30 wt %. The TPX crystallization was observed with differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). The membranes were characterized with scanning electron microscopy (SEM), porosity, and pore size measurement. As the content of D‐n‐OP increased in mixed‐diluents, the solubility with TPX increased, inducing the phase separation changing from liquid–liquid phase separation into solid–liquid phase separation, which changed the membrane morphology and structure. When the ratios of DBP to D‐n‐OP were 10 : 0, 7 : 3; 5 : 5, and 3 : 7, membranes were formed with cellular structure and well connected pores, while the ratio was 0 : 10, discernable spherulities were found with not well‐formed pore structure. The effect of composition of the mixed‐diluents on membrane morphology was more remarkable in TPX/dioctyl‐sebacate (DOS)/dimethyl‐phthalate (DMP) system, since good cellular structure was formed when the ratios of DOS to DMP were 10 : 0, 7 : 3, while spherulites were observed when 5 : 5. Dual endotherm peaks behavior on DSC melting curves emerged for all the samples in this study, which was attributed to the special polymer crystallization behavior, primary crystallization, and secondary crystallization occurred when quenching the samples. As the content of D‐n‐OP increased, the secondary crystallization enhanced which induced the first endotherm peak on DSC melting curves moving to a lower temperature and the broadening of the overall melting peak, as well as the increasing of the overall crystallinity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The phase diagram of blends of liquid crystalline polymer (LCP) and polycarbonate (PC) was constructed. The effect of temperature on morphological development in melt‐blended samples was examined with a polarized light microscope, in conjunction with a heating stage. Phase separation in the blend was observed as the temperature was increased. For a particular LCP/PC blend composition, two‐phase separation temperatures (Tsp1 and Tsp2) were determined. Consequently, the corresponding phase diagram relating to phase separation was constructed. It was divided into three regions. No phase separation occurred when the blend was below Tsp1. However, a slight phase separation was detected when the temperature was between Tsp1 and Tsp2. Moreover, pronounced phase separation was observed when the blend was at a temperature above Tsp2. The phase‐separated structure varied according to the initial composition of the blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The modification of the curing behaviour and the phase separation process for an epoxy resin blended with a crystalline thermoplastic was investigated in the case of the diglycidylether of bisphenol‐A (DGEBA)/4,4′‐methylene bis(3‐chloro‐2,6‐diethylaniline) (MCDEA) blended with syndiotactic polystyrene (sPS) and cured at 220 °C. Phase separation taking place during curing of the blend was investigated by differential scanning calorimetry (DSC) and optical microscopy in order to get a better understanding of the complex interactions between cure kinetics of epoxy matrix and crystallisation of sPS, both influenced by blend composition. Results suggested that phase separation and crystallisation of sPS occurred at almost similar times, with phase separation just being ahead of crystallisation. DSC and near‐infrared measurements were used for the determination of the cure kinetics. Slow delays on the cure reactions were observed during the first minutes for the sPS‐containing blends compared with the neat DGEBA/MCDEA system but, after some time, the reaction rate became faster for the blends than for the neat matrix. Phase separation occurring in the mixtures may explain this particular phenomenon. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Poly(ethylene‐co‐vinyl alcohol) hollow‐fiber membranes with a 44 mol % ethylene content were prepared by thermally induced phase separation. A mixture of 1,3‐propanediol and glycerol was used as the diluent. The effects of the ratio of 1,3‐propanediol to glycerol in the diluent mixture on the phase diagram, membrane structure, and membrane performance were investigated. As the ratio increased, the cloud point shifted to lower temperatures, and the membrane structure changed from a cellular structure due to liquid–liquid phase separation to a particulate structure due to polymer crystallization. Better pore connectivity was obtained in the hollow‐fiber membrane when the ratio of 1,3‐propanediol to glycerol was 50:50, and the membrane showed about 100 times higher water permeability than the membrane prepared with pure glycerol. For the prepared hollow‐fiber membrane, the solute 20 nm in diameter was almost rejected. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 219–225, 2005  相似文献   

18.
The blend membranes were satisfactorily prepared by coagulating a mixture of O‐carboxymethylated chitosan (CM‐chitosan) and alginate in aqueous solution with 5 wt % CaCl2, and then by treating with 1 wt % HCl aqueous solution. Their structure and miscibility were characterized by scanning electron micrograph, X‐ray diffraction, infrared spectra, differential thermal analysis, and atomic absorption spectrophotometer. The results indicated that the blends were miscible, when the weight ratio of CM‐chitosan to alginate was in the range from 1 : 1 to 1 : 5. The polymers interpenetration including a Ca2+ crosslinked bridge occurred in the blend membrane, and leads to high separation factor for pervaporation separation of alcohol/water and low permeation. The tensile strength in the wet state (σb = 192 kg cm−2 for CM‐chitosan/alginate 1 : 1) and thermostability of the blend membranes were significantly superior to that of alginic acid membrane, and cellulose/alginate blend membranes, owing to a strong electrostatic interaction caused by —NH2 groups of CM‐chitosan with —COOH groups of algic acid. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 610–616, 2000  相似文献   

19.
Dual‐layer acetylated methyl cellulose (AMC) hollow fiber membranes were prepared by coupling the thermally induced phase separation (TIPS) and non‐solvent induced phase separation (NIPS) methods through a co‐extrusion process. The TIPS layer was optimized by investigating the effects of coagulant composition on morphology and tensile strength. The solvent in the aqueous coagulation bath caused both delayed liquid–liquid demixing and decreased polymer concentration at the membrane surface, leading to porous structure. The addition of an additive (triethylene glycol, (TEG)) to the NIPS solution resolved the adhesion instability problem of the TIPS and NIPS layers, which occurred due to the different phase separation rates. The dual‐layer AMC membrane showed good mechanical strength and performance. Comparison of the fouling resistance of the AMC membranes with dual‐layer polyvinylidene fluoride (PVDF) hollow fiber membranes fabricated with the same method revealed less fouling of the AMC than the PVDF hollow fiber membrane. This study demonstrated that a dual‐layer AMC membrane with good mechanical strength, performance, and fouling resistance can be successfully fabricated by a one‐step process of TIPS and NIPS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42715.  相似文献   

20.
聚醚砜制膜液的相分离:Ⅰ.三元体系   总被引:2,自引:0,他引:2  
本文对聚醚砜在不同溶剂和不同非溶剂中所构成三元体系的相分离进行研究。采用浊点滴定法测定了在常用溶剂和非溶剂中的浊点数据,溶剂对PES的溶解能力,依次为:甲酰胺〈二甲基业砜〈N,N-二甲基甲酰胺〈《N,N-二甲基乙酰胺〈N-甲基吡咯烷酮;以二甲基甲酰胺为溶剂,非溶剂的沉淀能力依次为:H2O〉丙三醇〉甲醇〉乙二醇〉乙醇〉丙二醇〉丙醇,线性浊点不能较好描述三元体系的浊点关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号