首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spherical crosslinked beads using chitosan, glycine and glutaraldehyde were prepared for controlled release formulations. Structural investigation of the beads was made with IR analysis. Morphological study of the beads was carried out by scanning electron microscopy. The swelling behaviour of the beads was monitored as a function of time in solutions of different pH. The release experiments were performed using thiamine hydrochloride (Thi‐HCl) as a model drug. These preliminary results suggest the possibility of modifying the formulations to obtain the desired controlled release of drug in an oral sustained delivery system. © 2000 Society of Chemical Industry  相似文献   

2.
In vitro studies have been carried on semiinterpenetrating polymer network (IPN) beads of chitosan–alanine as carrier for the controlled release of chlorpheniramine maleate (CPM) drug. A viscous solution of chitosan–alanine was prepared in 2% acetic acid solution, extruded as droplets by a syringe to NaOH–methanol solution and crosslinked using glutaraldehyde as a crosslinker. The swelling behavior of crosslinked beads in different pH solutions was measured at different time intervals. The swelling behavior was observed to be dependent on pH and degree of crosslinking. The structural and morphological studies of beads were carried out by using a scanning electron microscope. The drug release experiments of different drug loading capacity beads were performed in solutions of pH 2 and pH 7.4 using CPM as a model drug. The concentration of the released drug was evaluated using UV spectrophotometer. The results suggest that chitosan–alanine crosslinked beads are suitable for controlled release of drug. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3751–3757, 2007  相似文献   

3.
Semi‐interpenetrating polymer network beads of chitosan and poly(ethylene glycol) were prepared and characterized for controlled release of drugs. A viscous solution of chitosan and poly(ethylene glycol) in 2% acetic acid was extruded as droplets with the help of a syringe and crosslinked using glutaraldehyde. The structural studies of the beads were performed by using a Fourier transform infrared spectrophotometer and scanning electron microscope. The swelling behavior, solubility, hydrolytic degradation, and loading capacity of the beads for isoniazid were investigated. The structural changes of the beads at pH 2.0 and 7.4 were put forward using the data obtained by infrared and ultraviolet spectroscopy. The prepared beads showed 82% drug‐loading capacity, which suggested that these semi‐interpenetrating polymer network beads are suitable for controlled release of drugs in an oral sustained delivery system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 639–649, 2001  相似文献   

4.
Enzymic hydrolyzed chitosan was employed to prepare chitosan–tripolyphosphate and chitosan–polyphosphoric acid gel beads using a polyelectrolyte complexation method for the sustained‐release of anticancer agent, 6‐mercaptopurine (6‐MP). pH responsive swelling ability, drug‐release characteristics, and morphology of the chitosan gel bead depends on polyelectrolyte complexation mechanism and molecular weight of the enzymic hydrolyzed chitosan. The complexation mechanism of chitosan beads gelled in pentasodium tripolyphosphate or polyphosphoric acid solution was ionotropic crosslinking or interpolymer complex, respectively. The drug‐release patterns of all chitosan gel beads in pH 6.8 seemed to be diffusional based, which might be in accordance with the Higuchi model, whereas release profiles of the chitosan–tripolyphosphate gel beads in pH 1.2 medium seemed to be non‐Fickian diffusion controlled due to the swelling or matrix erosion of the beads. The rate of 6‐MP releasing from chitosan–tripolyphosphate or chitosan–polyphosphoric acid gel matrix were significantly increased with the decreased molecular weight of enzymic hydrolyzed chitosan. However, the dissolution rates of 6‐MP entraped in chitosan–tripolyphosphate and chitosan–polyphosphoric acid gel matrix were significantly slower than the dissolution rate of the original drug. These results indicate that the chitosan–polyphosphoric acid gel bead is a better polymer carrier for the sustained release of anticancer drugs in simulated intestinal and gastric juice medium than the chitosan–tripolyphosphate gel beads. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1868–1879, 1999  相似文献   

5.
Chitosangel beads were prepared using an in‐liquid curing method by ionotropic crosslinking or interpolymer linkage with tripolyphosphate (TPP) or polyphosphate (PP). The ionic interaction of chitosan with TPP or PP is pH‐dependent due to the transition of “ladder‐loop” complex structures. Chitosan gel beads cured in a pH value lower than 6 of a TPP solution was a controlled homogeneous ionic‐crosslinking reaction, whereas chitosan gel beads cured in a lower pH PP solution was a nonhomogeneous interpolymer complex reaction due to the mass‐transfer resistance for the diffusion of macromolecular PP. According to the results of FTIR and EDS studies, it was suggested that significantly increasing the ionic‐crosslinking density or interpolymer linkage of a chitosan–TPP or chitosan–PP complex could be achieved by transferring the pH value of curing agent, TPP or PP, from basic to acidic. The swelling behavior of various chitosan beads in acid medium appeared to depend on the ionic‐crosslinking density or interpolymer linkage of the chitosan–TPP or chitosan–PP complex, which were deeply affected by the in‐liquid curing mechanism of the chitosan gel beads. By the transition of the in‐liquid curing mechanism, the swelling degree of chitosan–TPP or chitosan–PP beads was depressed and the disintegration of chitosan–TPP or chitosan–PP beads did not occur in strong acid. The drug‐release patterns of the modified chitosan gel beads in simulated intestinal and gastric juices were sustained for 20 h. These results indicate that the sustained release of anticancer drugs could be achieved due to the variation of the reaction mechanism of a chitosan–polyelectrolyte pH‐dependent ionic interaction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1093–1107, 1999  相似文献   

6.
New biodegradable pH‐responsive hydrogel beads based on chemically modified chitosan and sodium alginate were prepared and characterized for the controlled release study of protein drugs in the small intestine. The ionotropic gelation reaction was carried out under mild aqueous conditions, which should be appropriate for the retention of the biological activity of an uploaded protein drug. The equilibrium swelling studies were carried out for the hydrogel beads at 37°C in simulated gastric (SGF) and simulated intestinal (SIF) fluids. Bovine serum albumin (BSA), a model for protein drugs was entrapped in the hydrogels and the in vitro drug release profiles were established at 37°C in SGF and SIF. The preliminary investigation of the hydrogel beads prepared in this study showed high entrapment efficiency (up to 97%) and promising release profiles of BSA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
In this study, carboxymethyl chitosan (CMC) hydrogel beads were prepared by crosslinking with Ca2+. The pH‐sensitive characteristics of the beads were investigated by simulating gastrointestinal pH conditions. As a potential protein drug delivery system, the beads were loaded with a model protein (bovine serum albumin, BSA). To improve the entrapment efficiency of BSA, the beads were further coated with a chitosan/CMC polyelectrolyte complex (PEC) membrane by extruding a CMC/BSA solution into a CaCl2/chitosan gelation medium. Finally, the release studies of BSA‐loaded beads were conducted. We found that, the maximum swelling ratios of the beads at pH 7.4 (17–21) were much higher than those at pH 1.2 (2–2.5). Higher entrapment efficiency (73.2%) was achieved in the chitosan‐coated calcium‐CMC beads, compared with that (44.4%) in the bare calcium‐CMC beads. The PEC membrane limited the BSA release, while the final disintegration of beads at pH 7.4 still leaded to a full BSA release. Therefore, the chitosan‐coated calcium‐CMC hydrogel beads with higher entrapment efficiency and proper protein release properties were a promising protein drug carrier for the site‐specific release in the intestine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3164–3168, 2007  相似文献   

8.
Chitosan‐coated polyphosphazene‐Ca2+ hydrogel beads were fabricated by dropping polyphosphazene into CaCl2/chitosan gelling solution. Polyphosphazene used here was a water‐soluble degradable polyanion (PCPAP), which carried almost two carboxylatophenamino groups on each phosphorus atom of the polymer backbone. Two kinds of turbidimetric titration were applied in this study to reveal the interaction between PCPAP and chitosan within the pH range of 4.57≈7.14. The effect of gelling solution pH on the properties of chitosan‐coated PCPAP beads was especially emphasized. It was found that the PCPAP/chitosan complex prepared at relatively high pH (pH 6.5) dissociated most slowly in pH 7.4 phosphate‐buffered solution (PBS). The erosion of chitosan‐coated beads and the release of model drug (Coomassie brilliant blue and myoglobin) in PBS were both obviously prolonged with the increase of gelling solution pH, exhibiting perfect accordance with the behavior of complex dissociation. In addition, the coating of PCPAP/chitosan complex on the bead surface facilitated the improvement of drug loading efficiency. The higher the gelling solution pH, the more the drug loading efficiency improved. At pH 6.5 (PCPAP 5%, CaCl2 7%, chitosan 0.3%), the loading efficiency of myoglobin in beads reached as high as 93.2%. These results indicate that the chitosan‐coated polyphosphazene‐ Ca2+ bead is a potential formulation for drug controlled release. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1993–1999, 2004  相似文献   

9.
A mild chitosan/calcium alginate microencapsulation process, as applied to encapsulation of biological macromolecules such as albumin and insulin, was investigated. The microcapsules were derived by adding dropwise a protein-containing sodium alginate mixture into a chitosan–CaCl2 system. The beads containing a high concentration of entrapped bovine serum albumin (BSA) as more than 70% of the initial concentration were achieved via varying chitosan coat. It was observed that approximately 70% of the content is being released into Tris-HCl buffer, pH 7.4 within 24 h and no significant release of BSA was observed during treatment with 0.1M HCl pH 1.2 for 4 h. But the acid-treated beads had released almost all the entrapped protein into Tris-HCl pH 7.4 media within 24 h. Instead of BSA, the insulin preload was found to be very low in the chitosan/calcium alginate system; the release characteristics were similar to that of BSA. From scanning electron microscopic studies, it appears that the chitosan modifies the alginate microspheres and subsequently the protein loading. The results indicate the possibility of modifying the formulation in order to obtain the desired controlled release of bioactive peptides (insulin), for a convenient gastrointestinal tract delivery system. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
An inexpensive and simple method was adopted for the preparation of chitosan beads, crosslinked with glutaraldehyde (GA), for the controlled release of diclofenac sodium (DS). The beads were prepared by varying the experimental conditions such as pH, temperature, and extent of crosslinking. The absence of any chemical interaction among drug, polymer, and the crosslinking agent was confirmed by FTIR and thermal analysis. The beads were characterized by microscopy, which indicated that the particles were in the size range of 500–700 μm and SEM studies revealed smooth surface and spherical shape of beads. The beads produced at higher temperature and extended exposure to GA exhibited lower drug content, whereas increased drug loading resulted in enhanced drug release. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 211–217, 2007  相似文献   

11.
Biocompatible and biodegradable pH‐responsive hydrogels based on poly(acrylic acid) and chitosan were prepared for controlled drug delivery. These interpolymeric hydrogels were synthesized by a γ‐irradiation polymerization technique. The degree of gelation was over 96% and increased as the chitosan or acrylic acid (AAc) content increased. The equilibrium swelling studies of hydrogels prepared under various conditions were carried out in an aqueous solution, and the pH sensitivity in a range of pH 1–12 was investigated. The AAc/chitosan hydrogels showed the highest water content when 30 vol % AAc and 0.1 wt % chitosan were irradiated with a 30 kGy dose of radiation. In addition, an increase of the degree of swelling with an increase in the pH was noticed and it had the highest value at pH 12. The drug 5‐fluorouracil was loaded into these hydrogels and the release studies were carried out in simulated gastric and intestinal fluids. The in vitro release profiles of the drugs showed that more than 90% of the loaded drugs were released in the first 1 h at intestinal pH and the rest of the drug was released slowly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3270–3277, 2003  相似文献   

12.
Mushroom tyrosinase was covalently immobilized on a poly(acrylic acid)‐type, weakly acidic cation‐exchange resin (Daiaion WK10, Mitsubishi Chemical Corp., Tokyo, Japan) with 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide hydrochloride salt as a water‐soluble carbodiimide. Ion‐exchange resins immobilized with tyrosinase were packed in one column, and crosslinked chitosan beads prepared with epichlorohydrin were packed in another column. The enzymatic activity was modified by covalent immobilization, and the immobilized tyrosinase had a high activity in the temperature range of 30–45°C and in the pH range of 7–10. When solutions of various alkylphenols were circulated through the two columns packed with tyrosinase‐immobilized ion‐exchange resins and crosslinked chitosan beads at 45°C and pH 7 (the optimum conditions determined for p‐cresol), alkylphenols were effectively removed through quinone oxidation with immobilized tyrosinase and subsequent quinone adsorption on chitosan beads. The use of chemically crosslinked chitosan beads in place of commercially available chitosan beads was effective in removing alkylphenols from aqueous solutions in shorter treatment times. The removal efficiency increased with an increase in the amount of crosslinked chitosan beads packed in the column because the rate of quinone adsorption became higher than the rate of enzymatic quinone generation. The activity of tyrosinase was iteratively used by covalent immobilization on ion‐exchange resins. One of the most important findings obtained in this study is the fact that linear and branched alkylphenols suspected of weak endocrine‐disrupting effects were effectively removed from aqueous solutions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Two series of pH‐responsive biodegradable interpolymeric (IPN) hydrogels based on chitosan (Ch) and poly(vinyl alcohol) (PVA) were prepared for controlled drug release investigations. The first series was chemically crosslinked with different concentrations of glutaraldehyde and the second was crosslinked upon γ‐irradiation by different doses. The equilibrium swelling characteristics were investigated for the gels at 37°C in buffer solutions of pH 2.1 and 7.4 as simulated gastric and intestinal fluids, respectively. 5‐Fluorouracil (FU) was entrapped in the hydrogels, as a model therapeutic agent, and the in vitro release profiles of the drug were established at 37°C in pH 2.1 and 7.4. FTIR, SEM, and X‐ray diffraction analyses were used to characterize and investigate the structural changes of the gels with the variation of the blend composition and crosslinker content before and after the drug loading. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2864–2874, 2007  相似文献   

14.
In this work, graphene oxide (GO)-incorporated composite beads were developed from poly(N-isopropyl acrylamide)/sodium alginate (PNIPAM/NaAlg) using ionotropic gelation technique. The interaction between GO and PNIPAM/NaAlg with Ca2+ ions as a cross-linker was investigated by Fourier transform spectroscopy. X-Ray diffraction pattern showed that the GO was distributed uniformly in the PNIPAM/NaAlg with Ca2+ ions while scanning electron micrograph technique revealed that composite beads were formed in spherical shape. The controlled release characteristics of composite beads were studied using 5-fluorouracil (5-FU) as anti-cancer model drug. The encapsulation efficiencies were found to be between 90 and 92% in all formulations. Furthermore, the equilibrium swelling ratio (%) and in vitro release studies of the beads were carried out in two different pH values of 1.2 and 7.4 and at different temperature conditions of 25 and 37 °C. The obtained results showed that the swelling ratio decreased with an increase in GO concentration. In vitro release studies performed in response to both pH and temperature and they proved that the 5-FU drug was released from composite beads over 32 h without burst release. Cytotoxicity results showed pristine composite beads are good cytocompatible. In addition, the cytotoxicity of 5-FU was found to be improved when incorporated with composite beads than pure 5-FU. It is therefore concluded that the developed composite beads have dual response and can be used as controlling released carriers in cancer drug delivery applications.  相似文献   

15.
In this study, the availability of chitosan was systematically investigated for removal of bisphenol A (BPA, 2,2‐bis(hydroxyphenyl)propane) through the tyrosinase‐catalyzed quinone oxidation and subsequent quinone adsorption on chitosan beads. In particular, the process parameters, such as the hydrogen peroxide (H2O2)‐to‐BPA ratio, pH value, temperature, and tyrosinase dose, were discussed in detail for the enzymatic quinone oxidation. Tyrosinase‐catalyzed quinone oxidation of BPA was effectively enhanced by adding H2O2 and the optimum conditions for BPA at 0.3 mM were determined to be pH 7.0 and 40°C in the presence of H2O2 at 0.3 mM ([H2O2]/[BPA] = 1.0). Removal of BPA from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Novel biodégradable pH and thermal-responsive hydrogels were prepared for controlled drug delivery studies via reaction of chitosan with 4-chloroacetylantipyrine in DMF/H2O, followed by heating of the formed poly [acetylantipyrine-chitosan] with glutaraldehyde as a crosslinking agent to give the hydrogels. These hydrogels were subjected to equilibrium swelling studies at different temperatures (25°C, 37°C and 45°C) in solutions of pH 2.1 and 7.4. Methotrexate (MTX) was entrapped in the hydrogels, and drug release studies were carried out at 37 °C in solutions at pH 2.1 and 7.4.  相似文献   

17.
N,N,N-Trimethyl chitosan, a highly water soluble derivative of chitosan, has been made by reductive methylation of chitosan by a three-step process reported in literature. A novel polyelectrolyte complex of this derivative with gellan gum has been made by mixing the aqueous solutions of the two polymers. The complex was characterized by FTIR, TGA, DSC and SEM techniques. Maximum yield of the complex was obtained at pH 2.0 with a gellan gum:trimethylchitosan ratio of 3:1. The swelling study indicated pH responsiveness of the polyelectrolyte complex sample, with higher swelling under neutral or slightly basic conditions. In vitro studies on the release of the drug ketoprofen from the polyelectrolyte complex matrix were conducted in simulated gastric and intestinal fluids. The results indicated release of 85–90 % of the entrapped drug in the media of pH 6.8 and 7.4 and less than 7 % release in the medium of pH 1.2. The kinetic analysis indicated the drug release to be a first-order process. The mechanism of water transport and drug diffusion is shown to be of Fickian type. The results prove the suitability of the polyelectrolyte complex as a matrix material for delivery of drugs with short half life such as ketoprofen in the slow release mode.  相似文献   

18.
In this study, a combined use of biopolymer chitosan and oxidoreductase polyphenol oxidase (PPO) was applied to the removal of bisphenol A (BPA) as an endocrine disrupting chemical from aqueous solutions. The optimum conditions for the enzymatic quinone oxidation of BPA were determined to be pH 7.0 and 40°C. Quinone derivatives generated were chemisorbed on chitosan beads, and BPA was completely removed at 4–7 h. The removal time was shortened with an increase in the amount of dispersed chitosan beads or the PPO concentration. In addition, the initial velocity of quinone oxidation increased with an increase in the amount of chitosan beads. The use of chitosan in the form of porous beads was more effective than the use of chitosan in the form of solutions or powder. It was found that an important factor for this procedure was a high‐specific surface area of chitosan beads and heterogeneous reaction of quinone derivatives enzymatically generated with chitosan. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Biocompatible and biodegradable pH‐responsive hydrogels based on poly(acrylic acid) (AAc) and chitosan were prepared for controlled drug delivery. These interpolymeric hydrogels were synthesized by a gamma irradiation polymerization technique. The degree of gelation was over 96% and increased as the chitosan or acrylic acid content increased. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of pH 1–12 was investigated. The AAc/chitosan hydrogels showed the highest water content when the 30 vol % AAc and 0.1 wt % chitosan were irradiated with a 30‐kGy radiation dose. Also, an increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 12. The drug, 5‐fluorouracil, was loaded into these hydrogels and the release studies were carried out in simulated gastric and intestinal fluids. The in vitro release profiles of the drugs showed that more than 90% of the loaded drugs were released in the first 1 h at the intestinal pH and the rest of the drug had been released slowly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3660–3667, 2003  相似文献   

20.
Novel pH-dependent, biodegradable interpolymeric network (IPN) hydrogels were prepared for controlled drug release investigations. The IPN hydrogels were prepared by irradiation of solutions of N-acryloyglycine (NAGly), polyethylene glycol diacrylate (PEGDA) mixed with chitosan, in the presence of a lower amount of glutaraldehyde as the crosslinker and using 2,2-dimethoxy-2-phenyl acetophenone as the photo-initiator. The equilibrium swelling studies were carried out for the gels at 37°C in buffer solutions of pH 2.1 and 7.4 (simulated gastric and intestinal fluids, respectively). 5-Fluorouracil (5-FU) was entrapped, as a model therapeutic agent, in the hydrogels and equilibrium-swelling studies were carried out for the drug-entrapped gels at 37°C. The in-vitro release profiles of the drug were established at 37°C in pH 2.1 and 7.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号