共查询到20条相似文献,搜索用时 0 毫秒
1.
Copolymerization of ethylene–propylene using high‐activity bi‐supported Ziegler–Natta TiCl4 catalyst
Heterogeneous Ziegler–Natta TiCl4 catalyst using MgCl2 and SiO2 as supports was prepared under controlled conditions. Mg(OEt)2 was used as a starting material and was expected to convert to active MgCl2 during catalyst preparation. Due to the high surface area and good morphological control, SiO2 was chosen as well. Slurry copolymerization of ethylene and propylene (EPM) was carried out in dry n‐heptane by using the catalyst system SiO2/MgCl2/TiCl4/EB/TiBA or TEA/MPT/H2 at temperatures of 40–70°C, different molar ratios of alkyl aluminum : MPT : Ti, hydrogen concentrations, and relative and total monomers pressure. Titanium content of the catalyst was 2.96% and surface area of the catalyst was 78 m2/g. Triisobutyl aluminum (TiBA) and triethyl aluminum (TEA) were used as cocatalysts, while ethyl benzoate (EB) and methyl p‐toluate (MPT) were used as internal and external donors, respectively. H2 was used as a chain‐transfer agent. Good‐quality ethylene propylene rubber (EPR) of rubber was obtained at the ratio of [TiBA] : [MPT] : [Ti] = 320 : 16 : 1 and polymerization temperature was 60°C. When TiBA was used as a cocatalyst, a higher and more rubberlike copolymer was obtained. For both of the cocatalysts, an optimum ratio of Al/Ti was obtained relative to the catalyst productivity. Ethylene content of the copolymer obtained increased with increasing TiBA concentration, while inverse results were obtained by using TEA. Addition of H2 increased the reactivity of the catalyst. The highest product was obtained when 150 mL H2/L solvent was used. Increasing temperature from 40 to 70°C decreased the productivity of the catalyst, while irregular behavior was observed on ethylene content. Relative pressure of PP/PE = 1.4 : 1 and total pressure of 1 atm was the best condition for the copolymerization. Polymers with ethylene contents of 25–84% were obtained. Increasing ethylene content of EPR decreased Tg of the polymer obtained to a limiting value. Viscosity‐average molecular weight (Mv) decreased with increasing temperature and TiBA and H2 concentration. However, increasing the polymerization time increased the Mv. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2597–2605, 2004 相似文献
2.
Gholam Hossein Zohuri Ali Bakhash Kasaeian Mahmoud Torabi Angagi Roghieh Jamjah Mohammad Ali Mousavian Mehersal Emami Saied Ahmadjo 《Polymer International》2005,54(6):882-885
Heterogeneous Ziegler–Natta catalyst of MgCl2 (ethoxide type)/TiCl4/diether was prepared. 2,2‐Diisobutyl‐1,3‐dimethoxy propane (DiBDMP), diether, was used as internal donor. Slurry polymerization of propylene was carried out using the catalyst in dry heptane while triethylaluminium (TEA) was used as co‐catalyst. The co‐catalyst effects, such as catalyst molar ratio, polymerization temperature, H2 pressure, external donor, triisobutylaluminium (TiBA) and monomer pressure, on the activity of the catalyst and isotacticity index (II) of the polymers obtained were studied. Rate of polymerization versus polymerization time is of a decay type with no acceleration period. There are an optimum Al/Ti molar ratio and temperature to obtain the highest activity of the catalyst. The maximum activity was obtained at 60 °C. Increasing the monomer pressure to 1 010 000 Pa linearly increased the activity of the catalyst. Addition of hydrogen to 151 500 Pa pressure increased activity of the catalyst from 2.25 to 5.45 kg polypropylene (PP) (g cat)?1 h?1 using 505 000 Pa pressure of monomer. The II decreased with increasing Al/Ti ratio, monomer pressure, hydrogen pressure and increased with increasing temperature to 60 °C, following with decrease as the temperature increases. Productivity of 11.55 kg (PP) (g cat)?1 h?1 was obtained at 1 010 000 Pa pressure of monomer and temperature of 60 °C. Addition of methyl p‐toluate (MPT) and dimethoxymethyl cyclohexyl silane (DMMCHS) as external donors decreased the activity of the catalyst sharply, while the II slightly increased. Some studies of the catalyst structure and morphology of the polymer were carried out using FTIR, X‐ray fluorescence, scanning electron microscopy and Brunauer–Emmett–Teller techniques. Copyright © 2005 Society of Chemical Industry 相似文献
3.
The solubility of 1‐hexene was measured for linear low‐density polyethylenes (LLDPEs) produced over a heterogeneous Ziegler–Natta catalyst, Mg(OEt)2/DIBP/TiCl4–TEA (ZN), and over a homogeneous metallocene catalyst, (2‐MeInd)zZrCl2–MAO (MT). The 1‐hexene solubility in LLDPEs was well represented by the Flory–Huggins equation with a constant value of χ. ZN–LLDPEs dissolved a larger amount of 1‐hexene and thus showed a lower value of χ compared to MT–LLDPEs. The Flory–Huggins interaction parameter χ, or the solubility of 1‐hexene at a given temperature and pressure, was suggested as a sensitive measure for the composition distribution of LLDPEs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1566–1571, 2002; DOI 10.1002/app.10418 相似文献
4.
The bisupported Ziegler–Natta catalyst system SiO2/MgCl2 (ethoxide type)/TiCl4/di‐n‐butyl phthalate/triethylaluminum (TEA)/dimethoxy methyl cyclohexyl silane (DMMCHS) was prepared. TEA and di‐n‐butyl phthalate were used as a cocatalyst and an internal donor, respectively. DMMCHS was used as an external donor. The slurry polymerization of propylene was studied with the catalyst system in n‐heptane from 45 to 70°C. The effects of the TEA and H2 concentrations, temperature, and monomer pressure on the polymerization were investigated. The optimum productivity was obtained at [Al]/[DMMCHS]/[Ti] = 61.7:6.2:1 (mol/mol/mol). The highest activity of the catalyst was obtained at 60°C. Increasing the H2 concentration to 100 mL/L increased the productivity of the catalyst, but a further increase in H2 reduced the activity of the catalyst. Increasing the propylene pressure from 1 to 7 bar significantly increased the polymer yield. The isotacticity index (II) decreased with increasing TEA, but the H2 concentration, temperature, and monomer pressure did not have a significant effect on the II value. The viscosity‐average molecular weight decreased with increasing temperature and with the addition of H2. Three catalysts with different Mg/Si molar ratios were studied under the optimum conditions. The catalyst with a Mg/Si molar ratio of approximately 0.93 showed the highest activity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1177–1181, 2003 相似文献
5.
采用邻苯二甲酸二异丁酯(DIBP)为内给电子体的Mg Cl2负载Ti Cl4催化剂,考察了在无外给电子体及以环己基甲基二甲氧基硅烷(简称C-donor)、二环戊基二甲氧基硅烷(简称D-donor)、苯基三乙氧基硅烷(简称PTES)为外给电子体的条件下,催化剂对乙烯/丙烯共聚合活性、单体竞聚率、共聚物序列分布和热性能的影响。结果表明,在不同外给电子体作用下,随着乙烯进料比的增加,聚合活性先增加后逐渐减小,并呈现出明显的"共单体效应";DIBP与D-donor有很好的协同效应,二者配合可提高催化剂活性,最高可达8.3 kg(以1 g Ti计);当乙烯/丙烯(摩尔比)为40%~65%时,共聚物链段中乙烯和丙烯分布更均匀,无规度更高,具有更短的平均序列长度;当乙烯/丙烯为50%时,所得共聚物的熔融温度最低,可达108℃,玻璃化转变温度为-48.6℃,表明聚合物具有较好的耐低温性能。 相似文献
6.
Tao Jiang Wei Chen Feng Zhao Yuexiang Liu Ruen Wang Hongbin Du Tianyi Zhang 《应用聚合物科学杂志》2005,98(3):1296-1299
The MgCl2/SiO2 complex support was prepared by spray drying using alcoholic suspension, which contained MgCl2 and SiO2. The complex support reacted with TiCl4 and di‐n‐butyl phthalate, giving a catalyst for propylene polymerization. The catalyst was spherical and porous with high specific surface area. TEA was used as a cocatalyst, and four kinds of alkoxysilane were used as external donors. The bulk polymerization of propylene was studied with the catalyst system. The effect of the reaction conditions and external donor on the polymerization were investigated. The results showed that the catalyst had high activity, high stereospecificity, and sensitive hydrogen responsibility. Polypropylene has good grain morphology because of duplicating the morphology of the catalyst. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1296–1299, 2005 相似文献
7.
Jianfeng Wang Li Wang Haoqi Gao Wenqin Wang Wei Wang Zhenrong Zhao Tianxu Sun Lianfang Feng 《Polymer International》2006,55(3):299-304
A novel MgCl2/SiO2‐supported Ziegler–Natta catalyst was prepared using a new one‐pot ball milling method. Using this catalyst, polyethylenes with different molecular weight distributions were synthesized. The effects of the [Si]/[Mg] ratio, polymerization temperature and [Al]/[Ti] ratio on the catalytic activity, the kinetic behaviour and the molecular weight and the polydispersity of the resultant polymer were studied. It was found that the polydispersity index of the polymer could be adjusted over a wide range of 5–30 through regulating the [Si]/[Mg] ratio and polymerization temperature, and especially when the [Si]/[Mg] ratio was 1.70, the polydispersity index could reach over 25. This novel bi‐supported Ziegler–Natta catalyst is thus useful for preparing polyethylene with a required molecular weight distribution using current equipment and technological processes. Copyright © 2005 Society of Chemical Industry 相似文献
8.
采用表面改性法制备了负载型Ni2(OCH3)2/SiO2双核金属甲氧基配合物催化剂,利用IR、DSC、TPD和微反技术对催化剂的表面结构、化学吸附性质和催化活性进行了研究。结果表明,负载型双核金属甲氧基配合物Ni2(OCH3)2/SiO2中Ni^2 与载体SiO2表面O^2-以双齿配位形式键合;二氧化碳在催化剂表面存在桥式吸附态和甲氧碳酸酯基物种两种吸附态,丙烯则只有一种吸附态;在适宜反应条件下,CO2和丙烯在Ni2(OCH3)2/SiO2催化剂上可以高选择性地合成甲基丙烯酸,反应物分子共吸附于催化剂表面同一活性单元以及羧酸根与丙烯解离吸附态的形成是反应顺利进行关键因素. 相似文献
9.
10.
Using VO2+ as a spin probe, a new method to obtain microenvironmental information on supports was developed which can be used in the choice of supports for coordination catalysts. Utilizing the above method, NaY was chosen as second support component. A complex support catalyst VOCl3/MgCl2/NaY/Al2Et3Cl3 was prepared and used in ethylene–propylene copolymerization. Higher polymerization activity was obtained with this catalytic system. Alternating the ratio of two kinds of supports, the composition and sequence structure of copolymers could be controlled, which showed that NaY participated in the active species, affected the insertion of monomer, and changed the composition and sequence structure of copolymers. © 1994 John Wiley & Sons, Inc. 相似文献
11.
Jin‐San Yoon Dong‐Ho Lee Eun‐Soo Park Ik‐Mo Lee Duck‐Kyung Park Sung‐Ouk Jung 《应用聚合物科学杂志》2000,75(7):928-937
Ethylene homopolymerization and ethylene/α‐olefin copolymerization were carried out using unbridged and 2‐alkyl substituted bis(indenyl)zirconium dichloride complexes such as (2‐MeInd)2ZrCl2 and (2‐BzInd)2ZrCl2. Various concentrations of 1‐hexene, 1‐dodecene, and 1‐octadecene were used in order to find the effect of chain length of α‐olefins on the copolymerization behavior. In ethylene homopolymerization, catalytic activity increased at higher polymerization temperature, and (2‐MeInd)2ZrCl2 showed higher activity than (2‐BzInd)2ZrCl2. The increase of catalytic activity with addition of comonomer (the synergistic effect) was not observed except in the case of ethylene/1‐hexene copolymerization at 40°C. The monomer reactivity ratios of ethylene increased with the decrease of polymerization temperature, while those of α‐olefin showed the reverse trend. The two catalysts showed similar copolymerization reactivity ratios. (2‐MeInd)2ZrCl2 produced the copolymer with higher Mw than (2‐BzInd)2ZrCl2. The melting temperature and the crystallinity decreased drastically with the increase of the α‐olefin content but Tm as a function of weight fraction of the α‐olefins showed similar decreasing behavior. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 928–937, 2000 相似文献
12.
To investigate the influence of support porosity parameters e.g., average pore volume (APV), pore diameter (PD), and pore surface area distribution (PSAD) on activity‐profile of catalyst and comonomer incorporation, a series of silica‐supports with different porosity were prepared through sol–gel method and used to synthesize corresponding (SiO2/MgCl2/TEOS/TiCl4) catalysts. Polymerization of ethylene/butene‐1 showed that increasing of APV from 0.75 to 2.2 cm3 g increase initial activity from 120 to 400 (gpoly/gcat.bar.hr) followed by appearance of secondary peaks in activity‐profile which could be attributed to the variation of PSAD. It is found that the effect of support in polymerization is a complicated issue which depends not only on the porosity parameters also on the comonomer concentration. The catalyst with PD of 300 Å gives higher comonomer incorporation and polymers with 15–20% lower crystallinity in contrast to catalyst with PD of 100 Å. Porosity effect was quantitatively studied by modifying of conventional Z‐N catalyst polymerization mechanism through introducing fragmentation term to achieve a new tool in designing and developing of polyolefin catalysts. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
13.
A series of nonbridged (cyclopentadienyl) (aryloxy)titanium(IV) complexes of the type, (η5‐Cp′)(OAr)TiCl2 [OAr = O‐2,4,6‐tBu3C6H2 and Cp′ = Me5C5 ( 1 ), Me4PhC5 ( 2 ), and 1,2‐Ph2‐4‐MeC5H2 ( 3 )], were prepared and used for the copolymerization of ethylene with α‐olefins (e.g., 1‐hexene, 1‐octene, and 1‐octadecene) in presence of AliBu3 and Ph3CB(C6F5)4 (TIBA/B). The effect of the catalyst structure, comonomer, and reaction conditions on the catalytic activity, comonomer incorporation, and molecular weight of the produced copolymers was examined. The substituents on the cyclopentadienyl group of the ligand in 1 – 3 play an important role in the catalytic activity and comonomer incorporation. The 1 /TIBA/B catalyst system exhibits the highest catalytic activity, while the 3 /TIBA/B catalyst system yields copolymers with the highest comonomer incorporation under the same conditions. The reactivity ratio product values are smaller than those by ordinary metallocene type, which indicates that the copolymerization of ethylene with 1‐hexene, 1‐octene, and 1‐octadecene by the 1–3/ TIBA/B catalyst systems does not proceed in a random manner. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
14.
Linear low‐density polyethylene (LLDPE) is produced in a reactor from single ethylene feed by combining Ti(OBu)4/AlEt3, capable of forming α‐olefins (predominantly 1‐butene), with SiO2‐supported Et(Ind)2ZrCl2 (denoted MAO/SiO2/Et(Ind)2ZrCl2), which is able to copolymerize ethylene and 1‐butene in situ with little interference in the dual‐functional catalytic system. The two catalysts in the dual‐functional catalytic system match well because of the employment of triethylaluminum (AlEt3) as the single cocatalyst to both Ti(OBu)4 and MAO/SiO2/Et(Ind)2ZrCl2, exhibiting high polymerization activity and improved properties of the obtained polyethylene. There is a noticeable increment in catalytic activity when the amount of Ti(OBu)4 in the reactor increases and 1‐butene can be incorporated by about 6.51 mol % in the backbone of polyethylene chains at the highest Ti(OBu)4 concentration in the feed. The molecular weights (Mw), melting points, and crystallinity of the LLDPE descend as the amount of Ti(OBu)4 decreases, which is attributed mainly to chain termination and high branching degree, while the molecular weight distribution remains within a narrow range as in the case of metallocene catalysts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2451–2455, 2004 相似文献
15.
16.
Bis(4‐(4‐amine‐3,5‐diisopropylbenzyl)‐2,6‐diisopropylphenylimino) acenaphthene NiBr2 (Catalyst I) was synthesized. The complex covalently supported on Et3Al‐treated silica (SC) and used for ethylene polymerization was produced with cocatalyst of common inexpensive alkylaluminum compounds. Polyethylenes (PEs) with branching numbers of 12.94 (1000C) to 116.02 (1000C) were prepared in heptane. The polymerization conditions, such as the cocatalyst, Al/Ni ratio, and temperature, had significant effects on catalytic activity and properties of polyethylenes. Confirmed by high‐temperature 13C NMR, the polyethylenes synthesized contain significant amounts of not only methyl but also ethyl, propyl, butyl, pentyl, and other long branches (longer than six carbons). The branching degree of polyethylenes increased with temperature, while their molecular weight and melting point decreased correspondingly, resulting in linear semicrystalline to totally amorphous polymers. The formation of the branches could be illustrated by the chain walking mechanism, which controlled their specific spacing and conformational arrangements with one another. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 103: 1483–1489, 2007 相似文献
17.
通过溶胶-凝胶法和浸渍法制备了二氧化硅负载的硫酸铝催化剂,并测试其在油酸与甲醇酯化反应中的活性,进行高酸值生物柴油原料酯化降酸的研究,考察了催化剂的焙烧温度、硫酸铝的负载量、醇酸比、催化剂用量、反应温度、反应时间及重复利用性等因素对油酸转化率的影响。结果表明,二氧化硅负载的硫酸铝催化剂在油酸和甲醇的酯化反应中具有良好的催化性能。在n(甲醇)∶n(油酸)=8,m(20-Al2(SO4)3/SiO2(500))∶m(油酸)=0.075,反应温度65℃和反应时间为180 min的条件下,油酸的转化率达到92.9%。油酸和甲醇在Al2(SO4)3/SiO2固体酸催化剂的酯化反应符合准一级反应动力学方程,表观活化能为41.56 kJ/mol,指前因子为3.52×104min-1。 相似文献
18.
用Ti(OBu)4/TiO2-Al2O3催化剂合成了聚(己二酸-1,4-丁二醇)酯。Ti(OBu)4/TiO2-Al2O3合成聚(己二酸-1,4-丁二醇)酯的最佳反应条件:催化剂载体焙烧温度为750℃,焙烧时间为4 h,催化剂加入量为1.5%,n(己二酸)/n(1,4-丁二醇)=1∶(1.2~1.3),反应温度为165~170℃,反应时间4 h,在此条件下得到聚酯,酯化率为93.02%,Mn=3 080,Mn/Mw=1.206,催化剂可反复使用5次。 相似文献
19.
C. Jaïmes A. Collet O. Giani-Beaune F. Schu W. Amass A. Amass 《Polymer International》1998,45(1):5-13
Copolymers of racemic β-butyrolactone (β-BL) with ε-caprolactone (ε-CL) (P(BL-co-CL)) and δ-valerolactone (δ-VL) (P(BL-co-VL)) were prepared by ring-opening polymerization reactions using the commercial aluminoxane catalyst tetraisobutyldialuminoxane (TIBAO). The yields, molecular weights, compositions and crystallinities were determined for both copolymers by gel permeation chromatography (GPC), nuclear magnetic resonance (1H NMR) spectroscopy and differential scanning calorimetry (DSC). A detailed study by 13C NMR spectroscopy has been made to determine monomer diad sequence distributions. These results and those of reactivity ratios indicate that the co-polymers may consist of compatible blocks of BL units and VL units of variable size. © 1998 SCI. 相似文献