首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多单体接枝聚丙烯对PP/PA6共混物形态及力学性能的影响   总被引:1,自引:1,他引:0  
用同向双螺杆挤出机制备了马来酸酐(MAH)、苯乙烯(St)多单体熔融接枝聚丙烯[PP-g-(St-MAH)],将其作为增容剂在Haake转矩流变仪上与PP/PA6共混得到PP/PA6/PP-g-(St-MAH)共混物,并对共混物的性能及结构进行了表征。结果表明,该增容剂明显改善了共混物的力学性能,当增容剂含量为15~20份时,共混物的冲击强度和拉伸屈服强度达最大值。采用扫描电子显微镜观察共混物试样断面的形态,发现分散相的粒径明显减小,且分散均匀。  相似文献   

2.
PA6/PP/SEBS-g-MAH共混物的相容性研究   总被引:2,自引:1,他引:2  
采用马来酸酐接枝(氢化苯乙烯/丁二烯/苯乙烯)共聚物(SEBS-g-MAH)作为增容剂,研究了增容剂用量对尼龙6/聚丙烯(PA6/PP)共混体系相态结构、力学性能的影响,以及在相同增容剂用量下不同PA6、PP配比对体系相形态的影响。结果表明,SEBS-g-MAH中的酸酐基团能与PA6末端的氨基发生化学反应,在PA6和PP的内表面形成PA6-SEBS接枝共聚物,明显改善了两相的界面相容性,并使共混物的力学性能得到显著提高。共混物冲击断面形貌的分析表明,共混物发生了明显的脆韧转变。  相似文献   

3.
This work deals with the synthesis of a new type of compatibilizer suitable for blends or alloys of polypropylene and engineering polymers having aromatic residues or functionality complimentary to hydroxyl. Polypropylene–phenol formaldehyde graft copolymers from thermoplastic phenol formaldehyde (PF) resins and functionalized polypropylene (f‐PP) were synthesized by reactive extrusion. The content of PF in the graft copolymer was determined by reaction variables like type and density of functionality on PP, molecular weight of PF, and viscosity ratio of f‐PP and PF. The results showed that the viscosity ratio is of primary importance for such reactive processing. Also, type and concentration of the functional groups were important variables. The glycidyl methacrylate functionality resulted in higher conversions than did PP‐g‐maleic anhydride within the available reaction times. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 347–354, 2000  相似文献   

4.
通过熔融接枝反应制备了甲基丙烯酸缩水甘油酯接枝聚丙烯(PP-g-GMA),并将其作为聚丙烯/聚酰胺6(PP/PA6)共混物的相容剂,研究了PP-g-GMA对PP/PA6共混物的力学性能及形态结构的影响。结果表明,采用滴定法测得PP-g-GMA接枝率为3.35 %;当PP-g-GMA的添加量为4 %(质量分数,下同)和8 %时,PP/PA6/PP-g-GMA共混物的拉伸强度和缺口冲击强度分别较PP/PA6共混物提高了32.4 %和60.4 %;PP-g-GMA显著改善了PP/PA6 共混物的界面相容性,是PP/PA6共混物的有效增容剂。  相似文献   

5.
The properties of polypropylene (PP)/polyamide 6 (PA) blends, obtained by the following two different blending methods, were investigated. Blends of PP/PA and PP/PA/maleic anhydride have been prepared using a twin screw extruder and a fiber cutting, flying and mixing apparatus that directly commingles PP fiber and PA fiber. The properties measured include rheological properties by means of a capillary rheometer, morphologies by scanning electron microscopy, and mechanical properties by a universal testing machine and a high rate impact tester. In the presence of compatibilizer, a marked dispersibility of the polymer blends of PP and PA was observed, and mechanical properties were found to increase as a result of improvement of the interfacial adhesion and the dispersibility. The properties of PP/PA blends manufactured by two different pieces of equipment were shown to be similar in the case of melting both resins. But in particular, superior impact properties were obtained in blends not melting PA fibers as a dispersed phase rather than blends using maleic anhydride grafted polypropylene (PP-g-MA) as a compatibilizer.  相似文献   

6.
Superior impact properties were obtained when maleic anhydride grafted styrene ethylene/butylene styrene block copolymer (SEBS-g-MAH) was used as a compatibilizer in blends of polyamide 6 (PA 6) and isotactic polypropylene (PP), where polyamide was the majority phase and polypropylene the minority phase. The optimum impact properties were achieved when the weight relation PA:PP was 80:20 and 10 wt% SEBS-g-MAH was added. The blend morphology was systematically investigated. Transmission electron microscopy (TEM) indicated that the compatibilizer forms a cellular structure in the PA phase in addition to acting as an interfacial agent between the two polymer phases. In this cellular-like morphology the compatibilizer appears to form the continuous phase, while polyamide and polypropylene form separate dispersions. In microscopy, PA appeared as a fine dispersion and PP as a coarse dispersion. The mechanical properties indicated that in fact PA, too, is continuous, and the blend can be interpreted as possessing a modified semi-interpenetrating network (IPN) structure with separate secondary dispersion of PP. The coarser PP dispersion plays an essential role in impact modification. Binary blends of the compatibilizer and one blend component were also investigated separately. The same cellular structure was observed in the binary PA/SEBS-g-MAH blends, and SEBS-g-MAH again appeared to form the continuous phase when the elastomer concentration was at least 10 to 20 wt%. By contrast, in PP/SEBS-g-MAH only conventional dispersion of elastomeric SEBS-g-MAH was observed up to 40 wt% elastomer. Impact strength was improved and the elastic modulus was lowered in both PA/SEBS-g-MAH and PP/SEBS-g-MAH blends when the elastomer content was increased. The changes in modulus indicate that the semi-IPN-like structure is formed in the binary PA/SEBS-g-MAH blends as well as in the ternary structure.  相似文献   

7.
聚丙烯的官能化及其与尼龙66相容性研究   总被引:4,自引:0,他引:4  
对聚丙烯(PP)进行官能化,并研究了接枝单体含量,引发剂含量,螺杆转速对接枝率和熔体流动速率的影响。再将不同接枝率的PP与尼龙66共混,研究了接枝率对共混物力学性能及相容性的影响;用扫描电子显微镜观察了共混物的形态,与未增容共混体系相比,增容后共混体系分散相尺寸明显减小,增容共混物的形态依赖于增容剂在共混物中的含量,增容剂的分子量及官能化基团的含量。  相似文献   

8.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

9.
根据非弹性体增韧机理,研究了以马来酸酐接枝PP作为PA6和PP共混制备PA/PP合金的相容剂,对金结构与性能的影响。结果表明,相容剂大大改善了合金的形态结构,使合金冲击强度大幅度提高,且得到综合性能优良的PA6/PP合金。  相似文献   

10.
The influence of hyperbranched polymer grafted polypropylene (PP‐HBP) on the morphology of polypropylene (PP)/polyamide 6 (PA6) blends has been investigated. The final morphology was strongly influenced by the PP‐HBP compatibilizer concentration. At low concentrations, PP‐HBP acts as an emulsifying agent, reducing the size of the dispersed phase and preventing coalescence. This is due to the high reactivity and diffusitivity of PP‐HBP rapidly forming a high density of copolymers at the interface. Compared to the use of maleic anhydride grafted PP (PP‐MAH) at identical concentrations, PP‐HBP yielded a smaller dispersed phase particle size. Therefore, PP‐HBP allows the use of less compatibilizer to obtain identical morphologies. At higher compatibilizer concentrations, it has been shown that the PP‐HBP efficiently stabilizes the interface and inhibits both coalescence and breakup of the PA6 droplets. The high concentration of reactive sites and the ability of PP‐HBP to react with both chain‐ends of PA6 suggest that interfacial stabilization occurs because of the formation of a partly crosslinked interface. The interfacial stabilization effects generated by PP‐HBP should allow one to control the morphology of polymer blends in order to create specific functional morphologies.  相似文献   

11.
The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1489–1498, 1997  相似文献   

12.
用固相力化学方法制备的聚丙烯接枝马来酸酐作增容剂 ,制备了尼龙 6/聚丙烯共混合金 ,研究了尼龙 6/聚丙烯的比例和增容剂用量对共混合金力学性能的影响 ,通过Molau实验和FT IR分析对增容机理作了初步探讨。  相似文献   

13.
《国际聚合物材料杂志》2012,61(3-4):641-654
Abstract

Rheological properties (melt flow index and melt stability), mechanical properties (tensile strength, flexural strength and impact) of polyamide (PA6) polypropylene (PP) blends were investigated. Influence of potential compatibilizors: 4,4′-diphenyhnethane carbodiimide (OCDI), 4,4′-diphenylmethane bismaleimide (BMI) and 2,2′-(1,4-pheaylene)-bisoxazoline (OX) on mechanical properties and thermostability of initial and glass reinforced polymer blends was also investigated too. We tried to study the structure of glass fiber reinforced composites by mercury intrusion porosimitry. The influence of compatibilizors on molecular weight of PA6 was studied by GPC, on chemical structure of blends was investigated by NMR and IR-spectroscopy. Addition of OCDI and OX (chain extenders) preserves the product formation as the react with the active and carbonyl groups of PA6. BMI has lower reactivity. Grafting of BMI to PP chains improves compatibility in PA6/PP blend and increases PP adhesion to glass fiber.  相似文献   

14.
A novel technique (pan‐milling mixing) was developed to control the morphology and thus enhance the mechanical properties of polypropylene/polyamide 6 (PP/PA6) systems. Through pan‐milling at ambient temperature, PP/PA6 pellets of particle size 2–4 mm can be effectively pulverized to well‐mixed micrometre fine powders in the solid state. During pan‐milling of mixtures of PP and PA6, the polymer molecules undergo chain scission and form copolymers that compatibilize the two polymers in situ. By press moulding the finely mixed PP/PA6 powder obtained at a temperature between the melting points of PA6 and PP (for example 200 °C), a blend can be obtained in which the PA6 powder, retained throughout the process in the solid state, is well dispersed in the PP matrix. The mechanical properties of the system are much better than that of PP/PA6 blends prepared by common twin screw extrusion mixing and injection moulding. Tensile strengths of the fine PA6 particle filled PP/PA6 (70/30) blend is 29.3 MPa, which is 6.1 MPa higher than that of a conventionally prepared PP/PA6 blend. The Izod notched impact strength of a fine PA6 particle‐filled PP/PA6 (70/30) blend is 6.34 kJ m?2, which is 1.72 kJ m?2 higher than that of a conventionally prepared PP/PA6 blend. Morphological analysis shows that the domain size of PA6 in the system is much smaller than that of the PP/PA6 blend, and can be controlled by the processing conditions such as temperature. © 2001 Society of Chemical Industry  相似文献   

15.
The intumescent fire retardant polypropylene (IFP/PP) filled with ammonium polyphosphate (APP), melamine (M), and PA6 (charring agent) is discussed. Intumescing degree (ID) and the char yield were determined. Only when the three main components of IFR coexist at appropriate proportions, it has optimal ID and higher char yield. The appropriate proportion is PA6 : APP : M = 10 : 10 : 5. A new compatibilizer, carboxylated polypropylene (EPP), was added to PP/PA‐6 blend. Flow tests indicated that the apparent viscosity increased with the addition of EPP, thermal characterization suggested that EPP has reacted with PA6, PA6‐g‐EPP cocrystallized with PA6, and EPP‐g‐PA6 cocrystallized with PP; SEM micrographs illustrated that the presence of EPP improved the compatibility of PP and PA6. All the investigations showed that EPP was an excellent compatibilizer, and it was a true coupling agent for PP/PA6 blends. Using PA6 as a charring agent resulted in the IFR/PP dripping, which deteriorated the flammability properties. The addition of nano‐montmorillonite (nano‐MMT) as a synergistic agent of IFR enabled to overcome the shortcoming. The tensile test testified that the addition of nano‐MMT enhanced the mechanical strength by 44.3%. SEM showed that nano‐MMT improved the compatibility of the composites. It was concluded that the intumescent system with nano‐MMT was an effective flame retardant in improving combustion properties of polypropylene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 739–746, 2006  相似文献   

16.
Rheological and morphological properties of melt processed poly(ethylene terephthalate) (PET)/polypropylene (PP) blends are presented. Two types of compatibilizer namely, PP‐g‐MA <MA= maleic anhydtide> and Elvaloy PTW, an n‐butyl acrylate glycidyl methacrylate ethylene terpolymers, were incorporated at different levels to the PET/PP blend system. Scanning electron microscopy revealed that the dispersed particle sizes were smaller in PET‐rich blends than PP‐rich blends. With increasing compatibilizer level, the refinement of morphology was observed in both the systems. However, the blends compatibilized with PTW showed a more refined (smaller) particle size, and at high PTW content (10 wt%), the morphology changed towards monophasic. The significant changes in morphology were attributed to the highly reactive nature of PTW. Investigation of rheological properties revealed that the viscosity of the PET/PP blends followed typical trends based on mixing rule, which calculates the properties of blends based on a linear average. Incorporation of PP‐g‐MA into the blends resulted in a negative deviation in the viscosity of the system with respect to that of the neat blend. With increasing PP‐g‐MA level, the deviation became more pronounced. Although incorporation of the compatibilizer into the PET/PP blends refined the morphology, it led to a drastic drop of viscosity, which could be attributed to inherently lower molecular weight of the compatibilizer. In the case of the blends compatibilized by PTW, a strong positive deviation in rheological properties was observed that confirmed the stronger interaction between the blend components due to reactive compatibilization process, which led to the more refined morphology in this series of blends. J. VINYL ADDIT. TECHNOL., 19:25–30, 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
The reactivity of maleic anhydride and acrylic acid polypropylene graft copolymers with amine groups and their effect in the compatibilization of polymer blends was analyzed in real time during the reactive processing of compatilized polypropylene/polyamide 6 (PP/PA6) blends. The presence of compatibilizers in the blend produces a block copolymer PP‐PA6, which stays in the blends interface, lowering the interfacial tension and reducing the PA6 particle size, affecting the light extinction phenomena. The in‐line optical detector is able to indirectly quantify the conversion of the compatibilization reaction of the blends. The signal intensity of the detector increases with the increase of the PA6 content due to the increase in the number of particles. Quantitative off‐line FTIR analyses of the compatibilized blends have shown that the amount of block copolymer formed when polypropylene grafted with acrylic acid (PP‐g‐AA) is used as compatibilizer increases with its content in the blend. There is a good correlation between the in‐line optical measurement and the off‐line amidic bond content formed. Non‐reacted compatibilizers are always present in the reactive blends whose content is proportional to its initial concentration. The PA6 particle size data obtained from scanning electron microscopy analysis showed good correlation with the in‐line measurements. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
Polypropylene is utilized in manifold applications due to its unique properties. However, its use has been limited in the textile industry because conventional dyestuffs have no affinity for this polymer. Amine modifiers, generally improve the dye‐ability of polypropylene. Polyamide 6 (PA6) is a traditional amine modifier which improves the dyeing ability of polypropylene with disperse dyes. In this investigation, polyetheramine (PEA) is introduced as a novel amine modifier which improves the dye‐ability of polypropylene with disperse and acid dyestuffs. To this end, the dyeing behavior as well as possible impairments of tensile properties of PEA modified polypropylene were studied and compared to PA6 modified polypropylene. As with the PA6 containing blends, the tensile properties of the incompatible PP/PEA blends decreased due to weak interfacial adhesions between the components of the blends. However, the incorporation of a compatibilizer into such blends led to better dispersions of modifiers in the matrix as well as formation of amide or imide linkages which in turn reincreased the tensile properties almost to their initial values. Both PEA and PA6 modifiers improved the disperse dye uptake of the blends. However, Only Jeffamine ED‐2003 (i.e., PEA) was capable of enhance the acid dye uptake of modified polypropylene. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

20.
通过扫描电镜、差示扫描量热仪和力学性能测试等方法研究了聚丙烯接枝马来酸配和酷酸乙烯酷(PP-g-MAH/VAc)对聚丙烯康酸胺6(80/20}共混体系的增容效果。结果表明,PP-g-(MAH/DAc)用于PP/PA6共混体系,分散相PA6的微区尺寸可以减小到5μm以下,相应地提高了共混物的断裂伸长率、拉伸强度和冲击强度。使用接枝率为5.3%的PP-g-(MAH/VAc)作为相容剂,当用量为8%时,体系的拉伸强度为60.88MPa,断裂伸长率为558%,冲击强度为5.28KJ/㎡.DSC分析表明,PP/PA6共混体系各组分相互促进成核,结晶度降低。FTIR结果表明,PP-g-(MAH/VAc)中的MAH上的酸配基团与PA6中的酸胺键发生了化学反应从而改善了体系的相容性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号