首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计并制作了压电层厚度分别为0.6mm、0.7mm、0.8mm、0.9mm的d15模式层合串联结构PZT-51压电悬臂梁俘能器。测量了开路和1.0 MΩ负载下,俘能器的振动频率与输出电压和输出功率的关系曲线,以及1.0 MΩ负载时的振动激励电压与输出峰-峰值电压关系曲线。结果表明,随着压电层厚度的减少,压电俘能器的谐振频率降低,输出电压和功率增大。压电层厚度为0.6 mm的压电俘能器具有最大开路输出电压1.69 V,在1.0 MΩ负载下最大输出功率为0.708μW。  相似文献   

2.
现有的非线性压电俘能器的输出功率提升主要通过改变俘能器的结构或引入非线性元素,但这些方法在提高俘能结构的输出功率,拓宽俘能器的俘能频带方面能力受限。该文设计了一种双端磁耦合式悬臂梁结构压电俘能结构,在利用永磁体引入非线性元素的基础上优化俘能结构,进一步提高系统的输出电压,拓宽俘能频带。通过将悬臂梁俘能结构等效为复杂边界条件的悬臂梁,推导磁耦合式悬臂梁结构的工作状态方程,并得到磁耦合式悬臂梁俘能结构的输出电压与永磁铁间距的关系,并通过实验测试进行验证。结果表明,在永磁体间距为5mm时,压电俘能结构获得最大的输出功率,在最佳的永磁铁间距和负载电阻下,双端压电磁耦合式悬臂梁的输出功率可达传统悬臂梁式压电俘能结构的1.5倍,谐振频率下降约7Hz。  相似文献   

3.
设计并制作了串联结构剪切模式(d15) PZT-51压电俘能器,其两PZT-51单元并肩放置,极化相反构成串联结构.在不同负载、不同频率下测量了该压电俘能器的电学性能.其中在73 Hz频率处,该压电俘能器连接2.2 MΩ负载对应的输出峰-峰值电压为12.4 V,输出功率为8.7μW.同时通过有限元分析模型,将模拟的数值解与实验测量值进行对比发现两者较吻合.结果表明,所设计的串联结构d15模式PZT-51压电俘能器有应用于俘获环境中低频振动能的前景.  相似文献   

4.
由于硅基底断裂韧性低及压电厚膜有利于提高俘能器输出功率,因此,该文提出在304不锈钢基底上制备PZT压电厚膜俘能器。304不锈钢薄片既作为基底又作为下电极,金属Pt/Ti结构作为上电极。不锈钢基底厚为30μm,采用电流体驱动雾化沉积制备5μm厚的压电材料,通过对压电材料XRD表征,得到了在(110)晶向择优取向的钙钛矿结构。设计了长20mm、宽5mm压电悬臂梁结构俘能器。实验表明,压电俘能器的谐振频率为81Hz,当加速度为0.69 g(g=9.8m/s2)时,输出开路电压峰-峰值为1.3V;负载电阻为260kΩ时,输出功率最大(为0.758μW),对应的功率密度为3.19mW·cm-3·g-2。  相似文献   

5.
为了解决部分微电子设备供电需求大,而单一的压电能量收集结构无法满足的问题,该文对基于涡致振动的压电能量收集阵列进行流-固-电耦合仿真,并与风洞实验数据进行对比.首先对前置阻流体的俘能结构进行测试,验证结构的可行性,然后对串列、并列、错列、长方阵型的压电俘能结构进行研究.仿真与实验结果表明,压电能量收集阵列随风速的增大呈...  相似文献   

6.
为避免驰振俘能器高流速下PZT损坏,使其能在复杂工作环境中具有稳定的输出特性,该文提出了一种利用磁力控制悬臂梁振动幅值的压电-电磁复合俘能器(GPEEH)。引入的非线性磁力可以调控钝体的振幅,提高驰振压电俘能器(PEH)的输出稳定性,改善其对高风速环境的适应性,且能够增加复合俘能器的输出电压。在搭建风洞实验平台和制作实验样机的基础上,研究不同负载电阻、风速、关键结构参数d0和d1对俘能器输出特性的影响规律。实验结果表明,当PEH钝体的振幅被磁力限制在一定区间时,钝体的振动频率和速度随着风速的升高而逐渐增加。风速为11.5 m/s时,PEH振动主频率(6.3 Hz)是风速为8.4 m/s时PEH振动主频率(4.3 Hz)的1.4倍。当风速为12 m/s, GPEEH的输出功率为6.18 mW,相较于单一驰振压电俘能器的输出功率提高了47%。其中当风速达到10.5 m/s时,PEH和电磁俘能器(EEH)的输出功率均趋于稳定。  相似文献   

7.
非线性技术可使压电式能量采集获得较宽的振动频率和较高的输出电压,该文基于非线性振动研究提出了一种新型的非线性压电-电磁复合式俘能器,将非线性压电-电磁复合式俘能系统等效为含有非线性刚度的质量-弹簧-阻尼振动系统,推导出俘能器的总输出平均功率公式。在0.6g简谐激励下,磁铁间距为2.5 mm,3mm,4mm时,对非线性压电-电磁复合式俘能器进行了实验测试,结果表明,随着磁铁间距的减小,引力增大,非线性俘能器的谐振频率降低,3dB带宽升高。  相似文献   

8.
针对汽车行驶过程中车载传感器需要持续稳定的供能需求,设计一种以谐振腔结构为主体,扰流圆柱与亥姆霍兹谐振腔为辅助的压电俘能器。为研究俘能器的发电性能,设计其最佳结构,建立流固电耦合仿真模型。仿真时,根据实际风压分布,将风压载荷分区加载到压电发电模块。仿真分析结果表明,基板与压电陶瓷的厚度比对压电悬臂梁的输出电压和固有频率有影响,最佳厚度比为1.25;基板与主腔体间间隙、扰流圆柱直径、亥姆霍兹谐振腔皆存在最佳尺寸参数使压电俘能器发电性能达到最佳;负载电阻在400~600 kΩ内时,可获得最佳的输出功率;风速为15 m/s时,最大输出功率为37.3 mW。  相似文献   

9.
为了研究负载电阻对压电悬臂梁振动俘能性能的影响,使用有限元法对直接与负载相连的悬臂梁压电振子进行压电-电路耦合分析,得到了负载电阻对压电俘能器谐振频率、输出电压和功率的影响关系,并进行实验验证.研究结果表明,随着外接负载电阻的增大,俘能器谐振频率有所增加,从短路谐振频率到开路谐振频率变化范围可达到2 Hz.此外,负载阻值的大小也会影响俘能器的发电能力,负载电阻越大,输出电压越高,但存在匹配电阻使压电俘能器的输出功率达到最大.因此,通过合理选用负载电阻可实现固有频率微调谐和增加发电能力的目的.  相似文献   

10.
提出了一种2π弧度的直角螺旋悬臂梁结构的压电能量收集器。该设计一方面可以降低谐振频率,另一方面可以提高单位体积的能量收集效率。悬臂梁整体结构厚度为2 mm,宽度为6 mm,整体尺寸大小为22 mm×26 mm。当施加的激励为0.1g加速度时,仿真输出电压为1.95 V,测量输出电压为1.8 V,相对电压误差为7.7%;仿真谐振频率为269 Hz,测量谐振频率为265 Hz,相对频率误差为1.5%;理论输出功率为7.04μW,测试输出功率最大为5.79μW,相对功率误差为17.8%。该压电能量收集器适用于便携式微电子系统。  相似文献   

11.
悬臂梁的材料与结构对压电俘能器的输出响应具有重要影响。为了 研究在1.5~5.8 m/s低风速环境下不同基底材料对接触式压电俘能器的影响,该文选择聚氯乙烯(PVC)、304不锈钢、1060铝和H68黄铜材料为基底的柔性聚偏氟乙烯(PVDF)压电悬臂梁结构,并进行了对比实验与分析。结果表明,以304不锈钢为基底的悬臂梁结构输出功率最大。通过计算不同基底材料梁的结构参数发现,在低风速工况下,梁的结构刚度与减幅因数是影响压电俘能器输出性能的主要因素。同等工况下,梁的结构刚度越小,接触式压电俘能器的启动风速越低,风致振动的激振力频率越高;减幅因数越小,悬臂梁的输出功率越大。  相似文献   

12.
丁维高  谢进 《压电与声光》2018,40(5):684-689
使用哈密顿原理,建立了纯弯曲压电曲梁俘能器的机电耦合偏微分方程,对悬臂边界条件下的压电曲梁俘能器进行了模态分析,得到了俘能器在基础两向振动激励下的模态坐标方程;求解了俘能器在激励下电压与模态响应的稳定解。数值计算实例分析了激励频率、负载电阻对俘能器的电压及功率响应的影响。结果表明,曲梁俘能器与直梁俘能器的电压、功率响应规律具有相似之处,负载电阻不仅对曲梁俘能器的输出功率、输出电压有影响,也会影响其共振频率。  相似文献   

13.
剪切模式压电俘能器利用较高的压电系数d_(15),理论上能够收集到更多的能量。该文设计了一种基于d_(15)模式的L型基座压电俘能器,通过有限元仿真分析与直立型结构进行了对比。结果表明,L型结构不发生谐振时的俘能性能与直立型结构基本相同,在很宽频带内均有稳定的能量输出;而在一阶模态频率,L型结构的输出功率有大幅增加。该文制作了L型基座d_(15)模式PZT-51压电俘能器,实测表明,压电俘能器的谐振频率为86 Hz,当加速度为2.5g(g=9.8m/s~2)时,在匹配负载203kΩ上输出功率为31.25μW,对应单位重力加速度下的功率密度为84μW·cm~(-3)。  相似文献   

14.
为了满足压电陶瓷在振动平台微位移测试系统中输出更大范围的微位移及保持更高精度的条件,设计了一种高压大电流、带有直流偏置可连续调频调幅的正弦波输出压电陶瓷驱动电源。该文介绍了该驱动电源的设计方案、关键电路设计、控制系统软件设计及实验测试。该驱动电源以全桥逆变电路、隔离直流-直流抬压电路为核心,采用电压、电流双闭环比例-积分控制正弦脉宽调制(SPWM)波的基波来调节输出电压。通过搭建实验平台,验证了当压电陶瓷电容为5μF时,该驱动电源能实现在5 Hz~1 kHz频响内电压100倍增益放大,输出0~1 000 V的动态正弦电压,最大输出功率达到7 kW。结果表明,设计的压电陶瓷驱动电源具有输出电压高,输出功率大,频率响应快,且减小了电源整机体积和质量。  相似文献   

15.
针对现有压电、电磁俘能器不能同时输出大电压和大电流,设计了一种压电-电磁复合式俘能器。根据设计的复合式俘能器结构进行了理论建模,推导出了电压、电流、振幅和输出功率的表达式,并利用Ansys和Ansoft仿真软件对复合式俘能器的输出特性进行了仿真分析。最后通过实验对比分析了压电、电磁与压电-电磁复合式俘能器的输出特性,分析得到在0.6 g(g=10m/s2)加速度作用下,压电-电磁复合式俘能器的最优输出功率比电磁、压电俘能器分别提高了118%、38%,同时3dB带宽可增大67%、25%。  相似文献   

16.
针对线性、单一的振动能量俘能器存在工作频带狭窄、只能采集单向振动等问题,该文提出了一种适应货运列车等多向振动应用场景的新型多向振动俘能装置,以增强对环境中振动能量的俘获。该装置结合压电和电磁俘能器,通过螺旋圆柱弹簧和顶端质量有效捕获多向振动,并通过磁力传递振动能量至压电梁。合理设计了弹簧-质量结构,使其在较低的频率范围内可实现多种振动模态,拓宽了俘能器的谐振频带。为了充分利用压电材料,采用了变宽度压电悬臂梁,使应力均匀分布。压电梁自由端的永磁体随着压电梁的振动而产生变化的磁场,在线圈中产生感应电压。通过有限元分析和实验测试,验证了复合式俘能器可以采集多向振动能量,并测试了在z向振动激励下压电、电磁及复合式俘能器的最大输出功率。在频率9.5 Hz、z向振幅2 mm的正弦波激励下,复合式俘能器输出最大功率为3.276 mW。该系统在理论上可为低功耗传感器提供持续电力,为机械能收集与能量转换领域提供技术支持。  相似文献   

17.
提出了一种基于压电效应的人体动能转换装置(压电俘能器),并对其发电能力进行了理论和试验分析。结果表明,在一定变形范围内,压电俘能器的输出电能随着激励力的增加而增大;当激励频率和压电俘能器结构尺寸确定时,压电俘能器的输出功率随着负载电阻的变化而变化,且存在最佳的负载使其输出功率达到最大值,最大输出功率是压电俘能器开路时电压和电容的函数,最大输出功率与外接滤波电容无关。在2Hz(行走频率)激振频率下,压电俘能器最大输出功率为0.31mW。  相似文献   

18.
该文提出了一种基于弹簧振动平台的上变频压电俘能器,解决了低频振动能量收集效率低的问题。分析了压电悬臂梁输出功率与激励频率的三次方正相关,解释了采用上变频收集低频振动能量的原因。应用赫兹接触理论分析了拨片与压电悬臂梁的接触力,建立了拨动式激励的压电俘能器机电耦合模型。在综合考虑重叠长度和拨片厚度等影响因素后,选取厚度0.1 mm矩形不锈钢拨片。实验表明,在1g(g=9.8 m/s2)、5.67 Hz的激励信号下,单拨动式上变频V25W型压电悬臂梁输出功率可达9.6 mW,具有很强的低频能量收集性能。  相似文献   

19.
提出一种变截面悬臂梁压电俘能器结构,通过有限元仿真分析其振动特性和输出电压,有利于提高发电性能。该俘能器结构固定端为等截面梁,自由端为变截面梁,压电层粘贴在悬臂梁根部等截面梁表面,改变悬臂梁自由端与固定端的宽度比,得到多种不同形式的变截面悬臂梁。对比分析了三角形梁、矩形梁和具有不同宽度比梯形梁的固有频率、应力和应变分布及简谐激励输出电压响应。结果表明,三角形梁固有频率较大,输出电压最大,同时分析了不同变截面段长度对输出电压的影响。该文还分析了具有相同一阶频率、不同宽度比俘能器的输出电压,表明三角形结构单位体积压电层输出电压最大。对比分析了基体层上根部粘贴压电片和全部粘贴压电片的输出电压特性。结果表明,前者输出电压较大,发电性能更好。  相似文献   

20.
为提高悬臂梁压电俘能器的俘能效率,提出了一种冲击式悬臂梁压电俘能器。该俘能器包括多个悬臂梁压电振子,可在风力、人体动力能及环境振动能等多种外载荷作用下产生电能。俘能器的核心部件是悬臂梁压电振子,通过冲击实验发现悬臂梁压电振子在周期性冲击载荷作用下拓宽了共振频率,同时提高了输出功率。测试结果显示在频率约为21Hz的方波冲击信号下,外接电阻为50kΩ时,单个悬臂压电俘能器最大输出功率可达0.28mW;当频率分别为5Hz、8.5Hz时,还可分别输出0.07mW和0.17mW的功率,俘能器出现多个峰值电功率。研究表明所设计的冲击式压电俘能器可有效提高俘能效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号